Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin and Stanford researchers find key clues to muscle regeneration

12.11.2004


Discovery may one day lead to new ways to treat degenerative diseases



Scientists at Stanford University and Joslin Diabetes Center are providing new insights into how muscle cells regenerate -- leading to powerful tools to help scientists better understand diseases such as muscular dystrophy. Skeletal muscle contains a complex array of cell types. Among its principal components are multi-nucleated muscle fibers and muscle satellite cells -- cells located in close association with muscle fibers and containing precursors capable of giving rise to new muscle fibers.

"Our studies show that only the satellite cells, located near muscle fibers, can give rise to new muscle cells. Contrary to previous studies, precursor cells from bone marrow or other blood-forming tissues did not change their destiny to become muscle cells," said Amy J. Wagers, Ph.D., Investigator in the Developmental and Stem Cell Biology Research Section at Joslin Diabetes Center and Assistant Professor of Pathology at Harvard Medical School, the principal investigator of a study published in the Nov. 12 edition of Cell. The research, which originated in the laboratory of Irving L. Weissman, M.D., at Stanford University, now continues at Joslin Diabetes Center in Boston. Over the past few years, several research groups have reported that stem cells found in the bone marrow could repair damaged muscle cells. This had raised hopes that the well-characterized blood-forming stem cells could be used therapeutically to treat muscular diseases. Dr. Wagers’ work disputes these past results, showing that bone marrow stem cells do move to the muscle but don’t regularly participate in repairing muscle damage.


In the first part of the Dr. Wagers’ latest study, the researchers isolated muscle satellite cells from mice and marked them with a substance that glows in fluorescent light. They also generated adult bone-marrow cells and blood-forming stem cells that carried the fluorescent markers. They then examined the capacity of these three different cell types to generate new muscle cells in cell culture or in mice that had injured muscle tissue.

"The results show that adult stem cells that are committed to the blood lineage do not normally differentiate into muscle cells," said Dr. Wagers. "The only cells that had full potential to generate muscle cells were derived from muscle, not from transplanted bone-marrow or blood-forming stem cells."

Armed with this information, the researchers looked for the exact cells involved. To do this, they developed a new method that uses a set of unique cell-surface markers. This method allowed them to isolate and distinguish a subset of muscle precursor cells that give rise, at high frequency, to new muscle cells.

They found a precise cell type -- the precursor to new muscle growth. In fact, a single cell from this subset could alone generate a sizable colony of new muscle cells. "Identifying this precursor of new muscle cells gives us new research tools for future studies, including those in humans," said Dr. Wagers. "As we learn more about the genes expressed by these cells and the pathways involved in regulating them, we can learn more about muscle cell injury and regeneration. This may give us a better understanding of what goes wrong in degenerative diseases such as muscular dystrophy, leading possibly to new ways to treat such diseases."

The Research Team

This research initiative, which originated at Stanford University, is now underway at Joslin Diabetes Center in the laboratory of Dr. Wagers. The study’s first author was Richard I. Sherwood, currently a graduate student in the Department of Molecular and Cellular Biology at Harvard University. Other investigators included Julie L. Christensen, Ph.D., currently at Cellerant Therapeutics; Irina M. Conboy, Ph.D., an Assistant Professor in the Department of Bioengineering at University of California-Berkeley; Michael J. Conboy, Ph.D., a postdoctoral fellow at Stanford University; Thomas A. Rando, M.D., Ph.D., Associate Professor of Neurology and Neurological Sciences at Stanford; and Irving L. Weissman, M.D., Professor of Pathology and Developmental Biology at Stanford. Funding for this study was provided in part through grants from the National Institutes of Health, the Department of Veterans Affairs, and the Burroughs Wellcome Fund.

Marjorie Dwyer | EurekAlert!
Further information:
http://www.joslin.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>