Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine sponge leads researchers to immune system regulator

12.11.2004


A Japanese brewery, an Okinawan sea sponge and some clever detective work have enabled an international research team based at the University of Chicago to solve a biological mystery, and the solution suggests a novel way to boost the body’s defenses against cancer.



In Science Express, the online early-publication version of the journal Science, the researchers provide evidence that a sugary lipid known as iGb3 plays a key role in regulating the response of natural killer T cells, a component of the immune system that plays an important role in preventing cancer, fighting infections and perhaps triggering or avoiding autoimmune diseases.

Discovered less than ten years ago, natural killer (NK) T cells are unusual because they target lipids, often bound to carbohydrates, rather than proteins. When presented with a lipid that may signal a threat, they pump out chemical signals, such interferon-gamma and interleukin-4, which tell other components of the immune system to rid the body of these invaders.


Mice with defects in this system are prone to cancer and susceptible to infections. On the other hand, misdirected NKT cells may play a role in autoimmune diseases, such as type-1 diabetes. "Until now we had no idea what activated NKT cells except for one curious compound, a glycosphingolipid derived from a marine sponge," said study author Albert Bendelac, "but once we learned that this compound could prevent the spread of cancer in mice, a lot of people became very interested."

Bendelac, M.D., Ph.D., a professor of pathology at the University of Chicago, is one of only a handful of immunologists who concentrate on NKT cells. Scientists know a great deal about how the immune system recognizes proteins, but comparatively little about this type of cell or the mechanisms the immune system uses to sort out lipids.

NKT cells are also odd in that they fall somewhere between the brute force of innate immunity and the flexible sophistication of adaptive immunity. They appear to have an ingrained ability to recognize some bacterial lipids. At the same time, they express less-variable versions of T-cell receptors. These stripped-down receptors enable NKT cells to respond to a limited array of lipid or carbohydrate antigens when presented in certain ways.

The only substance known to fully activate NKT cells through these receptors was the glycosphingolipid derived from an Okinawan sea sponge Agelas mauritianus. In the 1990s, researchers at the Kirin Brewery in Japan found this molecule alpha-Galactosyl-ceramide, by performing a pharmaceutical screen for natural compounds with anti-tumor activity. While this compound exhibited potent anti-cancer activity in vivo, there was no clue about the mechanism of action until researchers discovered that it was recognized by NKT cells.

A purified synthetic version, known as a-GalCer or KRN 7000, is now in phase-2 human clinical trials for several tumor types. One problem with a-GalCer, however, is that it can over-stimulate NKT cells. After a burst of activity and rapid secretion of interferon-gamma, NKT cells driven by a-GalCer essentially "burn out," disappearing from the circulation for weeks. "This sponge glycolipid, a-GalCer, is not a substance seen in mammals," said Bendelac. "But it pointed us toward similar molecules in our hunt for the natural substance that activates NKT cells."

Finding the natural activator -- what immunologist call the endogenous ligand -- for these cells is crucial to understanding their biology, he added, and might provide a gentler and more enduring way to get them to fight tumors.

Bendelac’s team developed several approaches to identify the endogenous ligand. One crucial clue came from the discovery of genetically deficient mice that have almost no NKT cells. Bendelac’s team found that these mice are unable to make an enzyme required to produce iGb3. Mice that lack this enzyme have a severe NKT cell deficiency, and are cancer prone. "We don’t yet know the real function of iGb3, how it works or even how to find and measure it in the body," Bendelac said, "but we suspect is serves as an alarm of some kind. It may be produced by cells that are stressed -- damaged by an infection or transformed into cancer cells. Then it alerts the immune system to the presence of cells in trouble."

Activating NKT cells may be particularly valuable for preventing or treating cancers that spread to the liver, where NKT cells are most common.

Understanding the role of iGb3 may also provide clues about autoimmune disease. NKT cells play an important, although still poorly understood, role in regulating all sorts of immune responses. Defects in the system may allow the body to attack itself, leading to chronic inflammation or tissue damage. "It has been extremely difficult to explore the mechanisms that govern the recruitment, activation and development of NKT cells without knowledge of the natural antigens recognized by these cells," said Bendelac. "Because of their role in regulating a range of diseases, this has been a source of intense research and speculation for years."

The National Institutes of Health supported this research. Additional authors were lead author Dapeng Zhou, plus Jochen Mattner, Yuval Sagiv and Kelly Hudspeth of the University of Chicago; Carlos Cantu, Nicolas Schrantz and Luc Teyton of the Scripps Research Institute; Ning Yin, Ying Gao and Paul Savage of Brigham Young University; Yunping Wu, Tadashi Yamashita and Richard Proia of the NIH; Susan Teneberg of Goteborg University, Sweden; Dacheng Wang of the Chinese Academy of Sciences; and Steven Levery of the University of New Hampshire.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>