Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine sponge leads researchers to immune system regulator

12.11.2004


A Japanese brewery, an Okinawan sea sponge and some clever detective work have enabled an international research team based at the University of Chicago to solve a biological mystery, and the solution suggests a novel way to boost the body’s defenses against cancer.



In Science Express, the online early-publication version of the journal Science, the researchers provide evidence that a sugary lipid known as iGb3 plays a key role in regulating the response of natural killer T cells, a component of the immune system that plays an important role in preventing cancer, fighting infections and perhaps triggering or avoiding autoimmune diseases.

Discovered less than ten years ago, natural killer (NK) T cells are unusual because they target lipids, often bound to carbohydrates, rather than proteins. When presented with a lipid that may signal a threat, they pump out chemical signals, such interferon-gamma and interleukin-4, which tell other components of the immune system to rid the body of these invaders.


Mice with defects in this system are prone to cancer and susceptible to infections. On the other hand, misdirected NKT cells may play a role in autoimmune diseases, such as type-1 diabetes. "Until now we had no idea what activated NKT cells except for one curious compound, a glycosphingolipid derived from a marine sponge," said study author Albert Bendelac, "but once we learned that this compound could prevent the spread of cancer in mice, a lot of people became very interested."

Bendelac, M.D., Ph.D., a professor of pathology at the University of Chicago, is one of only a handful of immunologists who concentrate on NKT cells. Scientists know a great deal about how the immune system recognizes proteins, but comparatively little about this type of cell or the mechanisms the immune system uses to sort out lipids.

NKT cells are also odd in that they fall somewhere between the brute force of innate immunity and the flexible sophistication of adaptive immunity. They appear to have an ingrained ability to recognize some bacterial lipids. At the same time, they express less-variable versions of T-cell receptors. These stripped-down receptors enable NKT cells to respond to a limited array of lipid or carbohydrate antigens when presented in certain ways.

The only substance known to fully activate NKT cells through these receptors was the glycosphingolipid derived from an Okinawan sea sponge Agelas mauritianus. In the 1990s, researchers at the Kirin Brewery in Japan found this molecule alpha-Galactosyl-ceramide, by performing a pharmaceutical screen for natural compounds with anti-tumor activity. While this compound exhibited potent anti-cancer activity in vivo, there was no clue about the mechanism of action until researchers discovered that it was recognized by NKT cells.

A purified synthetic version, known as a-GalCer or KRN 7000, is now in phase-2 human clinical trials for several tumor types. One problem with a-GalCer, however, is that it can over-stimulate NKT cells. After a burst of activity and rapid secretion of interferon-gamma, NKT cells driven by a-GalCer essentially "burn out," disappearing from the circulation for weeks. "This sponge glycolipid, a-GalCer, is not a substance seen in mammals," said Bendelac. "But it pointed us toward similar molecules in our hunt for the natural substance that activates NKT cells."

Finding the natural activator -- what immunologist call the endogenous ligand -- for these cells is crucial to understanding their biology, he added, and might provide a gentler and more enduring way to get them to fight tumors.

Bendelac’s team developed several approaches to identify the endogenous ligand. One crucial clue came from the discovery of genetically deficient mice that have almost no NKT cells. Bendelac’s team found that these mice are unable to make an enzyme required to produce iGb3. Mice that lack this enzyme have a severe NKT cell deficiency, and are cancer prone. "We don’t yet know the real function of iGb3, how it works or even how to find and measure it in the body," Bendelac said, "but we suspect is serves as an alarm of some kind. It may be produced by cells that are stressed -- damaged by an infection or transformed into cancer cells. Then it alerts the immune system to the presence of cells in trouble."

Activating NKT cells may be particularly valuable for preventing or treating cancers that spread to the liver, where NKT cells are most common.

Understanding the role of iGb3 may also provide clues about autoimmune disease. NKT cells play an important, although still poorly understood, role in regulating all sorts of immune responses. Defects in the system may allow the body to attack itself, leading to chronic inflammation or tissue damage. "It has been extremely difficult to explore the mechanisms that govern the recruitment, activation and development of NKT cells without knowledge of the natural antigens recognized by these cells," said Bendelac. "Because of their role in regulating a range of diseases, this has been a source of intense research and speculation for years."

The National Institutes of Health supported this research. Additional authors were lead author Dapeng Zhou, plus Jochen Mattner, Yuval Sagiv and Kelly Hudspeth of the University of Chicago; Carlos Cantu, Nicolas Schrantz and Luc Teyton of the Scripps Research Institute; Ning Yin, Ying Gao and Paul Savage of Brigham Young University; Yunping Wu, Tadashi Yamashita and Richard Proia of the NIH; Susan Teneberg of Goteborg University, Sweden; Dacheng Wang of the Chinese Academy of Sciences; and Steven Levery of the University of New Hampshire.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Neutrons observe vitamin B6-dependent enzyme activity useful for drug development
17.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>