Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated scans let scientists track drugs’ broad effects on cells

12.11.2004


’Cytological profiling’ could streamline early phases of drug discovery

Bringing an unprecedented level of automation to microscopy, scientists at Harvard University have developed a powerful new method of visualizing drugs’ multifaceted impact on cells. The technique, which could eventually become a standard tool for drug discovery, is described this week in the journal Science.

Steven J. Altschuler and Lani F. Wu, mathematicians skilled in developing models to find meaningful patterns among mountains of data, worked with Timothy J. Mitchison of Harvard Medical School to automate microscopic imaging of drug-treated cells and recast the resulting scans in a computer-friendly format. The result: a method dubbed "cytological profiling" that trains computers to recognize cell status and health from cellular images, virtually automating microscopic scanning for various types of abnormalities.



"The resulting profiles of cellular changes wrought by drugs at various dosages provide information on drug mechanism that is highly relevant to understanding the specificity and toxicity of drugs," says Altschuler, research fellow at the Bauer Center for Genomics Research in Harvard’s Faculty of Arts and Sciences. "The information gleaned includes many key indicators of drugs’ potential usefulness and limitations as medicines."

"We actually started out on this project thinking that this could be a good research tool," adds Wu, research fellow at the Bauer Center. "We’ve now discovered, to our surprise, that it may also prove a powerful tool for drug discovery."

High-throughput cytological profiling lets scientists test numerous variables at once, wringing countless discrete cellular measurements from a single experiment. Faced with scores of drugs holding the potential to combat a given disease, researchers could hone in on the most promising drugs in a fraction of the time of current methods.

"This technique employs ’guilt by association’ -- if two drugs’ cytological profiles look similar, they probably work through similar mechanisms," Altschuler says. "It’s particularly useful for understanding drug action because it allows us to look at many concentrations of a drug, which is essential for comparing two drugs that may have different potency but act on the same target."

Since they are hardy and flourish even outside the body, the Harvard team used human cancer cells. They placed the cells in 384 minuscule wells in a plastic dish, injected each well with one of 100 drugs -- both medicines and toxins -- at different concentrations, and finished off the plates with11 chemical probes for different proteins and DNA.

After 20 hours of cell growth, the researchers used automated microscopy to collect some half a million images of the treated cells, followed by approximately 5 billion individual measurements of the size, shape, and quantity of different proteins, DNA, and organelles in each. Software developed by Altschuler, Wu, and colleagues allowed them to convert this copious data into profiles of the effects of each drug, yielding distinctive red-and-green "fingerprints" for each, not unlike the color-coded data from a DNA chip.

However, unlike DNA chips that meld bountiful data into an "average" denoted by dots of color on a grid, cytological profiling preserves individual data points -- so researchers can go back and analyze fine-grain information.

"By allowing quantitative measurement of many proteins and structures in cells over many samples, and systematic comparison between samples, our method brings microscopy into the ’-omics’ era, like genomics and proteomics," says Mitchison, of Harvard Medical School’s Institute of Chemistry and Cell Biology and Department of Systems Biology. "This really allows us a much broader view of how cells are affected by a wide range of perturbations."

Cytological profiling may be especially useful, Mitchison says, for evaluating drug candidatesin areas where making a drug with a highly specific biochemical effect is difficult, such as kinase inhibitors. Future applications may include testing the response of cancer cells with different genetic profiles to a spectrum of anti-cancer drugs, which could help predict clinical responses in individual patients.
Alschuler, Wu, and Mitchison were joined in this research, sponsored by the National Cancer Institute and Howard Hughes Medical Institute, by co-authors Zachary E. Perlman and Yan Feng at Harvard Medical School and Michael D. Slack in the Bauer Center for Genomics Research.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>