Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover molecular timekeeper in bone development

12.11.2004


Researchers at UT Southwestern Medical Center at Dallas have discovered a protein that controls an early and significant step in the exquisitely timed process of bone formation.



Dr. Eric Olson, chairman of molecular biology, and colleagues have shown the protein HDAC4 to be essential for proper bone development, or osteogenesis. Their findings, reported in the November issue of the journal Cell and available online, may have widespread implications for understanding and preventing osteoporosis or other bone disorders, said Dr. Olson, senior author of the study.

"This was a very unexpected discovery. We were studying the role of the HDAC4 gene in the control of heart growth. When we created genetically modified mice lacking the HDAC4 gene, we found that they had excess bone and died because their cartilage was converted into bone," said Dr. Olson, who directs the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic Research in Pediatric Oncology.


The process of bone formation occurs in three stages, orchestrated by specialized bone cells that secrete and absorb materials as needed. First, a soft cartilage-based foundation is laid, upon which mature bone will solidify. Then, minerals containing calcium and phosphate are deposited throughout the foundation, creating a framework for the bone. Finally, this raw material is sculpted and hardened into bone. Missteps in this process can result in developmental defects and bone diseases.

HDAC4 belongs to a family of enzymes that inactivate genes. Unlike other members of this family which are found in numerous tissues, HDAC4 is expressed in only a few tissues, including bone.

Dr. Olson and colleagues studied mice lacking the HDAC4 gene. At birth these animals had misshapen skulls and spines, and as they got older, failed to thrive.

Backtracking through the bone-formation process, they discovered that the defect was in the earliest steps, where the cartilage foundation was being laid and filled with minerals. Before the foundation was complete, minerals were being deposited too soon, allowing bone to harden before it was ready.

Biochemical tests revealed that HDAC4 controls the early timing of osteogenesis by preventing the final step, bone hardening from occurring. By specifically blocking a protein called Runx2, which controls the genes for bone hardening, HDAC4 allows the foundation and minerals to be properly laid before hardening can occur.

Dr. Olson said he believes that calcium, which is required for healthy bones, may signal the release of HDAC4 from Runx2 to initiate the bone-hardening program. "The discovery that bone formation is controlled by HDAC4, an enzyme, raises possibilities for designing drugs to control this process in the settings of bone diseases, such as osteoporosis," he said. "In fact, HDAC inhibitors are currently being used for the treatment of certain cancers. It will be interesting to investigate whether these inhibitors influence the process of bone formation."

Other UT Southwestern contributors to this study include Dr. Rick Vega, former postdoctoral researcher and lead author; Dr. James Richardson, professor of pathology and molecular biology; Dr. John Shelton, research scientist in internal medicine; Dr. Ana Barbosa, postdoctoral researcher in molecular biology; Dr. Junyoung Oh, former postdoctoral researcher in molecular biology; Eric Meadows and John McAnally, research technicians in molecular biology; Chris Pomajzl, former senior histology technician in pathology; and collaborators at Baylor College of Medicine.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>