Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover molecular timekeeper in bone development

12.11.2004


Researchers at UT Southwestern Medical Center at Dallas have discovered a protein that controls an early and significant step in the exquisitely timed process of bone formation.



Dr. Eric Olson, chairman of molecular biology, and colleagues have shown the protein HDAC4 to be essential for proper bone development, or osteogenesis. Their findings, reported in the November issue of the journal Cell and available online, may have widespread implications for understanding and preventing osteoporosis or other bone disorders, said Dr. Olson, senior author of the study.

"This was a very unexpected discovery. We were studying the role of the HDAC4 gene in the control of heart growth. When we created genetically modified mice lacking the HDAC4 gene, we found that they had excess bone and died because their cartilage was converted into bone," said Dr. Olson, who directs the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic Research in Pediatric Oncology.


The process of bone formation occurs in three stages, orchestrated by specialized bone cells that secrete and absorb materials as needed. First, a soft cartilage-based foundation is laid, upon which mature bone will solidify. Then, minerals containing calcium and phosphate are deposited throughout the foundation, creating a framework for the bone. Finally, this raw material is sculpted and hardened into bone. Missteps in this process can result in developmental defects and bone diseases.

HDAC4 belongs to a family of enzymes that inactivate genes. Unlike other members of this family which are found in numerous tissues, HDAC4 is expressed in only a few tissues, including bone.

Dr. Olson and colleagues studied mice lacking the HDAC4 gene. At birth these animals had misshapen skulls and spines, and as they got older, failed to thrive.

Backtracking through the bone-formation process, they discovered that the defect was in the earliest steps, where the cartilage foundation was being laid and filled with minerals. Before the foundation was complete, minerals were being deposited too soon, allowing bone to harden before it was ready.

Biochemical tests revealed that HDAC4 controls the early timing of osteogenesis by preventing the final step, bone hardening from occurring. By specifically blocking a protein called Runx2, which controls the genes for bone hardening, HDAC4 allows the foundation and minerals to be properly laid before hardening can occur.

Dr. Olson said he believes that calcium, which is required for healthy bones, may signal the release of HDAC4 from Runx2 to initiate the bone-hardening program. "The discovery that bone formation is controlled by HDAC4, an enzyme, raises possibilities for designing drugs to control this process in the settings of bone diseases, such as osteoporosis," he said. "In fact, HDAC inhibitors are currently being used for the treatment of certain cancers. It will be interesting to investigate whether these inhibitors influence the process of bone formation."

Other UT Southwestern contributors to this study include Dr. Rick Vega, former postdoctoral researcher and lead author; Dr. James Richardson, professor of pathology and molecular biology; Dr. John Shelton, research scientist in internal medicine; Dr. Ana Barbosa, postdoctoral researcher in molecular biology; Dr. Junyoung Oh, former postdoctoral researcher in molecular biology; Eric Meadows and John McAnally, research technicians in molecular biology; Chris Pomajzl, former senior histology technician in pathology; and collaborators at Baylor College of Medicine.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht How the insulin receptor works
19.02.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>