Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

By impounding iron, FHC foils cell suicide, fuels inflammation

12.11.2004


A research team based at the University of Chicago may have found a way to manipulate cell suicide, also known as programmed cell death, a normal process that regulates cell number but that goes awry in chronic inflammatory disorders, cancer and other diseases.



In the 12 Nov. 2004 issue of the journal Cell, the scientists show that a key step in the process of preventing cell suicide is the induction of ferritin heavy chain (FHC), a protein that collects and hoards iron. By sequestering iron -- which cells with suicidal tendencies need to make the harmful substances that induce death -- FHC prevents cellular suicide.

This finding suggests that drugs that modulate FHC or iron metabolism could provide a new and effective approach to anti-inflammatory therapy without the side effects, such as weakening the immune system, that come with current treatments. "In a long and complicated biochemical chain, this is one of the final links, which is exactly what we want," said study author Guido Franzoso, M.D., Ph.D., associate professor in the Ben May Institute for Cancer Research at the University of Chicago. "If we tamper with the front end, it changes everything, but boosting or blocking a downstream component allows us to select for a specific response."


Programmed cell death, also known as apoptosis, is the mechanism all multi-cellular organisms use to eliminate excess or damaged cells. Each year, through a balance of cell death and cell division, humans lose and regain a mass of cells roughly equal to their weight.

When a virus attacks an organism, for example, infected cells commit suicide to protect their healthy neighbors. At the same time, white blood cells multiply rapidly to battle the invader. Once the virus is eliminated, however, most of those virus-chasing white blood cells orchestrate their own demise. If they fail to thin their ranks sufficiently, they keep accumulating, infection after infection, which can lead to autoimmune diseases, such as arthritis, in which left-over warrior cells that no longer have an enemy turn on the self.

The researchers focused on NF-kB, a family of transcription factors -- proteins that turn on or off specific genes. The NF-kB family plays a crucial role in regulating immune and inflammatory responses to microbial invasion. During the early stages of an infection, for instance, NF-kB prevents white blood cells from dying off, allowing them to multiply quickly to fight off infection.

The problem of chronic inflammation begins when these lymphocytes evade cell death after winning the battle. In diseases like Crohn’s or arthritis they can turn their weaponry on healthy cells, which they misidentify as invaders, causing lasting disease and tissue damage. A similar process, when dysfunctional cells fail to die, plays a key role in the accumulation of cancerous cells and then protects those cells from radiation and chemotherapies designed to provoke tumor cell suicide.

Drugs that inhibit NF-kB are already in use for inflammatory bowel disease and certain cancers, such as Hodgkin’s lymphoma and multiple myeloma. But the tasks controlled by NF-kB are so wide ranging that blocking them globally can have serious side effects, such as reduced ability to fight off an infection.

"The goal has been to find new compounds that disrupt unwanted cell survival, but that act downstream from NF-kB so that they won’t harm the immune system," Franzoso said. For a long time that concept was a fantasy, he added, but "as we learn more about this pathway, it has become realistic." NF-kB acts through one subset of genes to influence immunity and a different subset to cause programmed cell death.

To map out those genes, Franzoso and colleagues used a "death-trap" screen. They exposed cells to TNF-Ą, a biochemical signal that can trigger cell death, then collected DNA from cells that survived. Several rounds of this process produced a library of potential protective genes. Next, they used microarrays to detect the genes that were boosted most though this selective process. "This system told us which genes were most enriched by selection," Franzoso said, which provided "a semiquantitative indication of protective efficacy." When they looked closer at each gene associated with survival after exposure to TNF-Ą, they found that FHC was the "pivotal mediator" preventing cell death.

Next, they tracked down the mechanism FHC uses to block apoptosis. They found that by hiding iron, FHC prevented the accumulation of oxygen radicals ¡V extremely unstable molecules that can damage other molecules and cell structures. Without an accumulation of oxygen radicals, cells are unable to take the final steps toward programmed cell death.

"The data indicate that the antioxidant activity of FHC involves iron sequestration and that this sequestration is crucial for suppression of death of white blood cells induced by proinflammatory factors," the authors note. These findings identify FHC as the mechanism "by which NF-kB controls the cascade of intracellular events that ultimately lead to cell suicide."

The next step is to develop drugs that can reduce or raise FHC levels. Lower levels could prevent inflammation and may also enhance the effects of anti-cancer therapies. Higher levels may prevent the unwanted cell death that occurs in neuro-degenerative disorders such as Parkinson’s and Alzheimer’s disease. "Not all that long ago, the NF-kB family, despite it crucial role in so many processes, was a complete puzzle," said Franzoso. "Now we have most of the pieces in place; we know how they fit together. The goal is to use this knowledge to make better therapies."

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>