Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene target found for common brain tumors in children

11.11.2004


Scientists at Johns Hopkins have linked a stem-cell gene to a portion of one of the most common childhood brain cancers, opening the door to tailored therapies that block the gene’s tumor-promoting ability.



The gene, called Notch2, whose pathway is known to be an important factor in regulating brain stem-cell growth and survival, has been studied in fruit flies for almost a century. The research team at the Johns Hopkins Pathology Department and Kimmel Cancer Center found that a protein made by the Notch2 gene promotes cancer cell growth by 27 percent in a childhood brain tumor, called medulloblastoma. Their studies, reported in the November 1 issue of Cancer Research, also revealed that children with high Notch2 gene activity fared worse in the course of their disease than those with less activity in Notch2.

The researchers report that a drug first developed for Alzheimer’s disease called DFK-167, which blocks activation of all Notch proteins, reduces growth of cancerous cells in culture by 80 percent, although unwanted side effects and dosing problems may make it a poor choice for treating human brain cancer. But the investigators are testing more potent drugs of the same class and developing new ones that block only the Notch2 pathway. No clinical trials with any drug have yet been planned, the researchers emphasize.


Scientists say that gene amplification - a process in which cells make too many copies of a gene -- is one of the most reliable indicators of a gene’s importance to cancer development. The Johns Hopkins team found Notch2 amplified in six of 40 (15 percent) medulloblastomas and other similar brain tumors. "Just like genetic mutations, amplifications are long-lasting DNA mistakes, as opposed to transient changes in the production of proteins and other gene products," says Charles Eberhart, M.D., Ph.D., assistant professor of pathology at Johns Hopkins. "Finding amplification of Notch2 is a smoking gun tying it to the development of these brain tumors," he added.

In their study, the Johns Hopkins scientists compared levels of a protein marker for Notch2 gene activity to the survival of 35 medulloblastoma patients. Of 11 patients with high levels, seven died. Of 24 patients with no detectable protein, only six died.

Standard surgery and radiation for medulloblastoma cures approximately 60 percent of children, but often results in many neurological and learning disabilities. "We’d like to develop a drug that only affects the Notch2 pathway, since blocking other members of the Notch family may actually have the opposite effect and encourage cancer growth," says Xing Fan, M.D., Ph.D., first author of the study and postgraduate fellow at Johns Hopkins.

In 25 of 30 of the medulloblastomas they studied, Eberhart’s team also found lower levels of Notch1 gene products compared to Notch2. Notch1 proteins normally provide a brake on growth of medulloblastoma cells and blocking their activation would cancel out some of the drug’s effects. "The net effect of any drug will depend on how much of each Notch1 and Notch2 is present, and since we found more Notch2, we think the scale can be tipped toward stopping the cancer," speculates Eberhart.

Close to 2,000 children are diagnosed with brain cancer annually in the United States. One in five childhood brain cancers is a medulloblastoma. The cancer originates in the back of the brain in the cerebellum. Medulloblastoma tumors often are characterized as looking like a large mass of stem cells.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>