Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New gene target found for common brain tumors in children


Scientists at Johns Hopkins have linked a stem-cell gene to a portion of one of the most common childhood brain cancers, opening the door to tailored therapies that block the gene’s tumor-promoting ability.

The gene, called Notch2, whose pathway is known to be an important factor in regulating brain stem-cell growth and survival, has been studied in fruit flies for almost a century. The research team at the Johns Hopkins Pathology Department and Kimmel Cancer Center found that a protein made by the Notch2 gene promotes cancer cell growth by 27 percent in a childhood brain tumor, called medulloblastoma. Their studies, reported in the November 1 issue of Cancer Research, also revealed that children with high Notch2 gene activity fared worse in the course of their disease than those with less activity in Notch2.

The researchers report that a drug first developed for Alzheimer’s disease called DFK-167, which blocks activation of all Notch proteins, reduces growth of cancerous cells in culture by 80 percent, although unwanted side effects and dosing problems may make it a poor choice for treating human brain cancer. But the investigators are testing more potent drugs of the same class and developing new ones that block only the Notch2 pathway. No clinical trials with any drug have yet been planned, the researchers emphasize.

Scientists say that gene amplification - a process in which cells make too many copies of a gene -- is one of the most reliable indicators of a gene’s importance to cancer development. The Johns Hopkins team found Notch2 amplified in six of 40 (15 percent) medulloblastomas and other similar brain tumors. "Just like genetic mutations, amplifications are long-lasting DNA mistakes, as opposed to transient changes in the production of proteins and other gene products," says Charles Eberhart, M.D., Ph.D., assistant professor of pathology at Johns Hopkins. "Finding amplification of Notch2 is a smoking gun tying it to the development of these brain tumors," he added.

In their study, the Johns Hopkins scientists compared levels of a protein marker for Notch2 gene activity to the survival of 35 medulloblastoma patients. Of 11 patients with high levels, seven died. Of 24 patients with no detectable protein, only six died.

Standard surgery and radiation for medulloblastoma cures approximately 60 percent of children, but often results in many neurological and learning disabilities. "We’d like to develop a drug that only affects the Notch2 pathway, since blocking other members of the Notch family may actually have the opposite effect and encourage cancer growth," says Xing Fan, M.D., Ph.D., first author of the study and postgraduate fellow at Johns Hopkins.

In 25 of 30 of the medulloblastomas they studied, Eberhart’s team also found lower levels of Notch1 gene products compared to Notch2. Notch1 proteins normally provide a brake on growth of medulloblastoma cells and blocking their activation would cancel out some of the drug’s effects. "The net effect of any drug will depend on how much of each Notch1 and Notch2 is present, and since we found more Notch2, we think the scale can be tipped toward stopping the cancer," speculates Eberhart.

Close to 2,000 children are diagnosed with brain cancer annually in the United States. One in five childhood brain cancers is a medulloblastoma. The cancer originates in the back of the brain in the cerebellum. Medulloblastoma tumors often are characterized as looking like a large mass of stem cells.

Vanessa Wasta | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>