Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sex Determining Genes of Infectious Fungus Resemble Human Y Chromosome

11.11.2004


Fungi and animals, including humans, have a lot in common when it comes to the arrangement of genes that determine their sex, according to new work by Howard Hughes Medical Institute geneticists at the Duke University Medical Center.



Regions of the genome that determine the sexual identity of the infectious fungus Cryptococcus neoformans bear striking similarities to the human Y chromosome -- the sex chromosome associated with male characteristics -- the team found. The researchers reported their findings in the December 2004 issue of the Public Library of Science Biology (now available online).

The result suggests that, despite their differences, similar evolutionary processes shaped the chromosomal sex-determining regions in both groups, said HHMI investigator Joseph Heitman, M.D., director of Duke’s Center for Microbial Pathogenesis. The fungus might therefore serve as a useful model system for the study of sex chromosome evolution and the genetic changes that can lead to infertility, he said. "The revolution in genome sciences has rapidly accelerated our ability to elucidate the process by which sex chromosomes evolved," Heitman said. "While mechanisms of sex determination are extremely diverse, our study highlights remarkable similarities among them in widely divergent groups."


The findings might also provide new insight into the process whereby the infectious fungus spurs disease, because evidence suggests a close tie between the genes involved in sexual identity and virulence, Heitman added. The work was supported by the National Institute of Allergy and Infectious Diseases. Sexual identity is governed by sex chromosomes in plants and animals. In humans and other mammals, males have one X and one Y chromosome, while females have a pair of X’s. In fungi, sexual identity is determined by so-called "mating type loci," genes located in a contiguous region of the genome, but which typically do not span an entire chromosome. C. neoformans exists in two mating types determined by a single genetic locus. Earlier work found that this sex-determining region is unusually large in C. neoformans compared to other fungi, containing a series of more than 20 genes.

The researchers reconstructed the sequential evolutionary events that fashioned the sex-determining region of the C. neoformans genome by comparing it to that region in the related pathogenic fungal species, Cryptococcus grubii and Cryptococcus gattii.

The sex-determining genome region appears to have acquired genes in four main steps -- beginning with the acquisition of genes into two separate sex-determining regions that later fused, the team reported. Furthermore, they found that the fungal sex-determining genes exist in clusters of functionally related genes. For example, genes involved in mate recognition occur in tandem, as do those that govern spore production. Other researchers have found that the human Y chromosome -- and the functionally-related gene clusters it contains -- has a similar history, characterized by the "sequential capture of genes" on four separate occasions, Heitman said. The fungal mating type locus later underwent processes that suppress recombination, they found. Recombination is the process whereby each member of a pair of chromosomes exchange segments of DNA. The procedure allows for new gene combinations to form and for the repair of damaged DNA.

The human Y chromosome is also barred from recombination along most of its length, a necessary requirement to prevent genes that encode male traits from infiltrating the female X chromosome, Heitman noted.

The researchers suggest that, despite the lack of recombination, some fungal mating type gene repair might occur through the exchange of gene segments within chromosomes. Certain sex-determination genes occur in palindromic orientations –- head-to-head or tail-to-tail repeats of particular sequences –- which would make such intra-chromosomal repair possible, a pattern also found on the human Y chromosome, according to Heitman. "These similarities suggest that further study of C. neoformans might help elucidate the genetic changes that can lead to infertility in fungi and humans, as well as the repair mechanisms that prevent its more common occurrence," Heitman said.

Their findings might also yield insight into the mechanism whereby C. neoformans invades the central nervous system to cause disease, most commonly in patients who lack a functioning immune system, such as organ transplant recipients and those with HIV/AIDS, Heitman added. A single fungal mating type spurs the vast majority of all C. neoformans infections, he explained, suggesting that sex determination and virulence are closely linked.

Collaborators on the study include James Fraser, Stephanie Diezmann, Ryan Subaran, Andria Allen, Klaus Lengeler and Fred Dietrich, Ph.D., all of Duke.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>