Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sex Determining Genes of Infectious Fungus Resemble Human Y Chromosome

11.11.2004


Fungi and animals, including humans, have a lot in common when it comes to the arrangement of genes that determine their sex, according to new work by Howard Hughes Medical Institute geneticists at the Duke University Medical Center.



Regions of the genome that determine the sexual identity of the infectious fungus Cryptococcus neoformans bear striking similarities to the human Y chromosome -- the sex chromosome associated with male characteristics -- the team found. The researchers reported their findings in the December 2004 issue of the Public Library of Science Biology (now available online).

The result suggests that, despite their differences, similar evolutionary processes shaped the chromosomal sex-determining regions in both groups, said HHMI investigator Joseph Heitman, M.D., director of Duke’s Center for Microbial Pathogenesis. The fungus might therefore serve as a useful model system for the study of sex chromosome evolution and the genetic changes that can lead to infertility, he said. "The revolution in genome sciences has rapidly accelerated our ability to elucidate the process by which sex chromosomes evolved," Heitman said. "While mechanisms of sex determination are extremely diverse, our study highlights remarkable similarities among them in widely divergent groups."


The findings might also provide new insight into the process whereby the infectious fungus spurs disease, because evidence suggests a close tie between the genes involved in sexual identity and virulence, Heitman added. The work was supported by the National Institute of Allergy and Infectious Diseases. Sexual identity is governed by sex chromosomes in plants and animals. In humans and other mammals, males have one X and one Y chromosome, while females have a pair of X’s. In fungi, sexual identity is determined by so-called "mating type loci," genes located in a contiguous region of the genome, but which typically do not span an entire chromosome. C. neoformans exists in two mating types determined by a single genetic locus. Earlier work found that this sex-determining region is unusually large in C. neoformans compared to other fungi, containing a series of more than 20 genes.

The researchers reconstructed the sequential evolutionary events that fashioned the sex-determining region of the C. neoformans genome by comparing it to that region in the related pathogenic fungal species, Cryptococcus grubii and Cryptococcus gattii.

The sex-determining genome region appears to have acquired genes in four main steps -- beginning with the acquisition of genes into two separate sex-determining regions that later fused, the team reported. Furthermore, they found that the fungal sex-determining genes exist in clusters of functionally related genes. For example, genes involved in mate recognition occur in tandem, as do those that govern spore production. Other researchers have found that the human Y chromosome -- and the functionally-related gene clusters it contains -- has a similar history, characterized by the "sequential capture of genes" on four separate occasions, Heitman said. The fungal mating type locus later underwent processes that suppress recombination, they found. Recombination is the process whereby each member of a pair of chromosomes exchange segments of DNA. The procedure allows for new gene combinations to form and for the repair of damaged DNA.

The human Y chromosome is also barred from recombination along most of its length, a necessary requirement to prevent genes that encode male traits from infiltrating the female X chromosome, Heitman noted.

The researchers suggest that, despite the lack of recombination, some fungal mating type gene repair might occur through the exchange of gene segments within chromosomes. Certain sex-determination genes occur in palindromic orientations –- head-to-head or tail-to-tail repeats of particular sequences –- which would make such intra-chromosomal repair possible, a pattern also found on the human Y chromosome, according to Heitman. "These similarities suggest that further study of C. neoformans might help elucidate the genetic changes that can lead to infertility in fungi and humans, as well as the repair mechanisms that prevent its more common occurrence," Heitman said.

Their findings might also yield insight into the mechanism whereby C. neoformans invades the central nervous system to cause disease, most commonly in patients who lack a functioning immune system, such as organ transplant recipients and those with HIV/AIDS, Heitman added. A single fungal mating type spurs the vast majority of all C. neoformans infections, he explained, suggesting that sex determination and virulence are closely linked.

Collaborators on the study include James Fraser, Stephanie Diezmann, Ryan Subaran, Andria Allen, Klaus Lengeler and Fred Dietrich, Ph.D., all of Duke.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>