Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny exosomes extracted from donor cells may be ’magic bullet’ for drug-free transplants

11.11.2004


University of Pittsburgh researchers describe how the antigen-rich particles receive cozy welcome by recipient cells



Bubble-like nano-scale particles that are shed by dendritic cells may hold the key to achieving transplant tolerance – the long-term acceptance of transplanted organs without the need for drugs, suggests a study by University of Pittsburgh researchers published in the Nov. 15 issue of the journal Blood. The results provide some of the first information about what these structures called exosomes actually do.

Exosomes are no larger than 65-100 nanometers – 1,000 times smaller than the diameter of a human hair – yet each contains a potent reserve of major histocompatibility complex (MHC) molecules. MHC molecules are gene products that cells use to determine self from nonself. Millions of exosomes scurry about within the bloodstream, and while their function has been somewhat of a mystery, researchers are beginning to surmise that they play an important role in immune regulation and response.


Adrian Morelli, M.D., Ph.D., of the University of Pittsburgh’s Thomas E. Starzl Transplantation Institute, became intrigued by the tiny exosomes while researching ways to harness dendritic cells, specialized white blood cells that present antigens to other immune system cells, as a means to donor-specific immune tolerance. Considered the "Holy Grail" of transplantation, tolerance means a recipient’s immune system fully accepts a donor graft without immunosuppressive drugs and without compromising its ability to respond appropriately to infections. Because certain dendritic cells have tolerance-enhancing qualities, several approaches under study involve giving recipients donor dendritic cells that have been modified in some way. The idea is that the modified donor cells would convince recipient cells that a transplanted organ from the same donor is not foreign.

"What may be a more effective approach is to make use of these tiny, MHC-rich vesicles that we can siphon from donor dendritic cells and that we have found are captured by recipient dendritic cells and processed in a manner important for cell-surface recognition. What this means is that we can efficiently deliver donor antigen using the exosomes as our magic bullet. Further research will determine if we can actually influence transplant tolerance," explained Dr. Morelli, assistant professor of surgery at the University of Pittsburgh School of Medicine.

The function and mechanisms for dendritic cell-derived exosomes had never before been elucidated, so Dr. Morelli and colleagues sought to do so by following the fate of exosomes that they extracted from dendritic cells of one mouse strain and injected into the bloodstream of mice of a different strain. The exosomes were labeled with a dye, and methods such as flow cytometry, confocal microscopy and immuno-electron microscopy helped the researchers track their every movement and activity within the mouse.

Very quickly and efficiently, the donor exosomes were captured by one of three recipient immune system cell types: antigen-presenting dendritic cells and macrophages, both originating in the spleen, and Kupffer cells of the liver.

Of particular interest to the researchers were those exosomes that were caught by the dendritic cells of the spleen, the site where dendritic cells typically present antigens as bounty to T cells that do their part to destroy the foreign invaders. Yet, what the researchers discovered was that these dendritic cells internalized the exosomes instead of displaying them to T cells, this despite the exosomes’ rich endowment of donor MHC molecules.

Once internalized, the exosomes were ushered inside larger vesicles, special endosomes called MHC-II enriched compartments, where they were processed with the dendritic cell’s own MHC molecules. This hybrid MHC-II molecule, now loaded with a peptide of donor MHC, was then expressed on the cell’s surface. As one family of MHC molecules, MHC-II serves as a beacon for a specific population of T cells called CD4+ T cells. Such cells are activated during chronic rejection in a process associated with the indirect pathway of immune recognition.

"This finding is significant because current immunosuppression therapies used in the clinical setting are not able to efficiently prevent T cell activation via the indirect pathway. Perhaps the CD4+ T cells normally involved in this pathway would retreat from attack if they encountered a cell surface marker that is of both donor and recipient origin, such as that which we observed following the dendritic cell’s internalization of the donor-derived exosomes," said Dr. Morelli.

Also significant, the researchers report, was that the process of internalizing the donor exosomes did not affect maturation of the dendritic cell. Only immature dendritic cells can capture antigens efficiently and are believed to participate in the induction of transplant tolerance. By contrast, once mature, dendritic cells are capable of triggering the T cell activation that leads to transplant rejection.

Additional research will be required to determine whether donor-derived exosomes will enhance the likelihood that an organ transplant from the same donor will be accepted. Under a recently awarded National Institutes of Health grant, Dr. Morelli plans to address this question with studies involving mice that receive heart transplants following infusion with exosomes from the same donor. A recent French study in rats, while offering no clues as to why, suggests the approach will be successful. In addition, animal studies conducted at Pitt by Paul Robbins, Ph.D., professor of molecular genetics and biochemistry, provide evidence that exosomes can reverse arthritis. Drs. Morelli and Robbins plan to collaborate in future research.

"This is an exciting new area of investigation, which appears to hold great promise in the area of transplant tolerance. So much more remains to be understood, but this current study, whereby we have offered the first details about the mechanism of dendritic cell-derived exosomes, is a significant start," commented senior author, Angus W. Thomson, Ph.D., D.Sc., professor of surgery and immunology at the Starzl Transplantation Institute and the University of Pittsburgh School of Medicine.

According to the Pitt authors, few research groups are engaged in active study of exosomes with most of the research taking place in Europe.

In addition to Drs. Morelli and Thomson, other authors of the study published in Blood include Adriana T. Larregina, M.D., Ph.D.; William J. Shufesky; Mara G. Sullivan; Donna Beer Stolz, Ph.D.; Glenn D. Papworth, Ph.D.; Alan F. Zahorchak; Alison J. Logar; Zhiliang Wang, M.D.; Simon C. Watkins, Ph.D.; and Louis D. Falo, Jr., M.D., Ph.D.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>