Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene exchange between species is aided by parasitism


Parasitic dodder (genus Cuscuta) growing on a plant host. Mark S. Brunell

Gene exchange between different plant species is made possible by their parasites, according to an Indiana University Bloomington report in this week’s Nature.

IUB biologists’ discovery that genes can move from plant parasites to plant hosts complements a report by University of Michigan and Smithsonian Institution scientists in the July 30 issue of Science that showed the opposite -- that genes can move from plant hosts to plant parasites. Taken together, the findings establish plant parasitism as the first known medium for "horizontal gene transfer," the exchange of genes between individuals of different species.

"Plant parasitism has emerged as the first solid mechanism of horizontal transfer in plants," said IUB biologist Jeff Mower, the Nature report’s lead author. "Other mechanisms also are likely to be important but, as of yet, they remain in the realm of speculation."

In their report, Mower, Distinguished Professor of Biology Jeff Palmer, postdoctoral fellow Sasa Stefanovic and graduate student Gregory Young report two new examples of horizontal transfer of the important mitochondrial gene atp1 from parasitic flowering plants to weeds in the genus Plantago. Three Plantago species possess both a normal, functioning copy of atp1 and a second defective atp1 that bears a striking resemblance to the atp1 gene found in parasitic "dodders" in the plant genus Cuscuta. Evidence suggests Plantago weeds acquired the defective atp1 through horizontal transfer recently -- not more than a few million years ago.

The dodders’ manner of attacking plants suggests a way DNA could have traveled between parasite and host, the IU scientists say. As part of their parasitism, dodder cells penetrate the cells of their hosts, making it possible for errant parasite DNA to sidestep several obstacles on its way into a host cell.

David Bricker | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>