Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNA study points to novel path for treating diabetes

11.11.2004


A study of a recently discovered microRNA gene reveals that its function is to regulate the secretion of insulin in the pancreas. The findings, which for the first time define a biological function for a mammalian microRNA gene, are published in the November 11 issue of Nature.



The discovery was made by a team of researchers from Rockefeller University, Lund University (Sweden), New York University, and Oxford University.

MicroRNA genes are a newly discovered large class of regulatory genes that do not encode proteins. Although these genes are present in virtually all multi-cellular organisms, their biological function had been largely unclear. In the study, microRNA miR-375 was found to regulate insulin secretion. NYU’s Nikolaus Rajewsky, a new genomics faculty member in NYU’s Center for Comparative Functional Genomics and an assistant professor in the Department of Biology, developed a computer algorithm to predict the targets of microRNAs in the genome. In the study, predicted gene targets for miR-375 were verified experimentally, thereby making an important contribution for understanding miR-375 function in regulating insulin secretion.


"These results are exciting for several reasons," said Rajewsky, who also holds an affiliated appointment at NYU’s Courant Institute of Mathematical Sciences. "First, they open new doors for understanding how to regulate insulin secretion in the body, which may offer avenues for treating diabetes. Second, our findings define for the first time a biological function for a mammalian microRNA gene. Third, they demonstrate that intense collaboration between computation and experiment is needed in modern biology in the post-genomics era."

"A key to Professor Rajewsky’s elegant bioinformatic studies has been his exploitation of the power of genome comparisons across diverse species to discover important regulatory elements conserved in nature," added Professor Gloria Coruzzi, chair of the Biology Department.

"His intense collaborations with experimentalists in biology and in medicine have been key to reducing his computational discoveries to practice, thus enabling important discoveries for human health. This approach is very much in the spirit of the genomics initiative of NYU and at the heart of NYU’s Center for Comparative Functional Genomics."

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Error-free into the Quantum Computer Age

18.12.2017 | Physics and Astronomy

Disarray in the brain

18.12.2017 | Studies and Analyses

2 million euros in funding for new MR-compatible electrophysiological brain implants

18.12.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>