Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNA study points to novel path for treating diabetes

11.11.2004


A study of a recently discovered microRNA gene reveals that its function is to regulate the secretion of insulin in the pancreas. The findings, which for the first time define a biological function for a mammalian microRNA gene, are published in the November 11 issue of Nature.



The discovery was made by a team of researchers from Rockefeller University, Lund University (Sweden), New York University, and Oxford University.

MicroRNA genes are a newly discovered large class of regulatory genes that do not encode proteins. Although these genes are present in virtually all multi-cellular organisms, their biological function had been largely unclear. In the study, microRNA miR-375 was found to regulate insulin secretion. NYU’s Nikolaus Rajewsky, a new genomics faculty member in NYU’s Center for Comparative Functional Genomics and an assistant professor in the Department of Biology, developed a computer algorithm to predict the targets of microRNAs in the genome. In the study, predicted gene targets for miR-375 were verified experimentally, thereby making an important contribution for understanding miR-375 function in regulating insulin secretion.


"These results are exciting for several reasons," said Rajewsky, who also holds an affiliated appointment at NYU’s Courant Institute of Mathematical Sciences. "First, they open new doors for understanding how to regulate insulin secretion in the body, which may offer avenues for treating diabetes. Second, our findings define for the first time a biological function for a mammalian microRNA gene. Third, they demonstrate that intense collaboration between computation and experiment is needed in modern biology in the post-genomics era."

"A key to Professor Rajewsky’s elegant bioinformatic studies has been his exploitation of the power of genome comparisons across diverse species to discover important regulatory elements conserved in nature," added Professor Gloria Coruzzi, chair of the Biology Department.

"His intense collaborations with experimentalists in biology and in medicine have been key to reducing his computational discoveries to practice, thus enabling important discoveries for human health. This approach is very much in the spirit of the genomics initiative of NYU and at the heart of NYU’s Center for Comparative Functional Genomics."

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>