Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying the Path to Infection

10.11.2004


New protein structure is a first step toward preventing E. coli diseases



Scientists from the U.S. Department of Energy’s Brookhaven National Laboratory and Stony Brook University have determined the two-dimensional crystal structure of a membrane protein involved in the process by which the Escherichia coli (E. coli) bacteria infects a human. This protein structure is a first step to better understanding how an E. coli infection begins, which may lead to information on how to block it.

“E. coli is responsible for urinary tract infections, one of the most prevalent diseases in the U.S.,” said Brookhaven biologist Huilin Li, the lead researcher on the study, described in the November 2, 2004, online edition of the Journal of Molecular Biology. “Between 50 and 80 percent of U.S. women will experience a urinary tract infection at least once during their lifetimes.”


“In the first stage of the infection, E. coli binds tightly to human kidney cells, using an ‘adhesive protein’ secreted by the cells through a membrane protein ‘channel.’ Our structure of this protein channel helps show how secretion occurs, which may eventually lead us to determine how to stop E. coli from attaching to the human cell,” said Li.

The protein channel, known as “PapC,” is a member of the “chaperone/usher” family, channels that not only provide a pathway for certain substances to leave a cell but also participate in preparing the substance for secretion. In this case, PapC gathers the “parts” that make up the adhesive and then guides the assembled adhesive out of the cell.

Li and his colleagues found that PapC consists of two main structural elements, with each part containing one opening, or pore. Each pore is approximately two nanometers (billionths of a meter) in diameter, and the entire structure is 11 nanometers in length and seven nanometers wide.

While this structure might suggest that PapC uses both pores simultaneously, the researchers think that only one of the two pores may be in use at once. However, the twin pore configuration might be necessary to coordinate the assembly and secretion of the adhesive. This is consistent with other membrane proteins that perform similar functions. “Our finding provides new insight into how the adhesive protein is assembled and secreted, but we need to know more about this process,” said Li. “A greater understanding of this will aid in the study and treatment of urinary tract infections and other related diseases.”

To determine the structure, the researchers grew a two-dimensional crystal of PapC – a sheet with a thickness of just one protein. To image individual proteins in the crystal, they used a technique called cryo-electron microscopy. In this method, the crystal is cooled to about minus 300 degrees Fahrenheit using liquid nitrogen and placed in an electron microscope. This device bombards the sample with high-energy electrons, which scatter off the atoms in the crystal. A lens inside the microscope focuses these electrons, forming a high-resolution image, which is recorded using film or a digital camera. The recorded images are analyzed by a computer, yielding the structure of the protein molecule.

This method produced a top-down image of the protein channel from an “untilted” sheet of crystals – that is, the electron beam hit the sheet head-on. To determine the channel’s three-dimensional structure, Li and his group plan to perform additional high-resolution imaging experiments using the same crystal sheet, but tilting it to large angles. This will allow the electrons to scatter off and produce an image of the protein channel’s other sides.

This research is a collaborative effort between researchers in Brookhaven Lab’s Biology Department, Tianbo Liu of Brookhaven’s Physics Department, and David Thanassi, a biologist in Stony Brook University’s Department of Molecular Genetics and Microbiology. The research was funded by a Brookhaven Laboratory Directed Research and Development grant, the National Institutes of Health, and the Office of Biological and Environmental Research within the U.S. Department of Energy’s Office of Science.

Laura Mgrdichian | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>