Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying the Path to Infection

10.11.2004


New protein structure is a first step toward preventing E. coli diseases



Scientists from the U.S. Department of Energy’s Brookhaven National Laboratory and Stony Brook University have determined the two-dimensional crystal structure of a membrane protein involved in the process by which the Escherichia coli (E. coli) bacteria infects a human. This protein structure is a first step to better understanding how an E. coli infection begins, which may lead to information on how to block it.

“E. coli is responsible for urinary tract infections, one of the most prevalent diseases in the U.S.,” said Brookhaven biologist Huilin Li, the lead researcher on the study, described in the November 2, 2004, online edition of the Journal of Molecular Biology. “Between 50 and 80 percent of U.S. women will experience a urinary tract infection at least once during their lifetimes.”


“In the first stage of the infection, E. coli binds tightly to human kidney cells, using an ‘adhesive protein’ secreted by the cells through a membrane protein ‘channel.’ Our structure of this protein channel helps show how secretion occurs, which may eventually lead us to determine how to stop E. coli from attaching to the human cell,” said Li.

The protein channel, known as “PapC,” is a member of the “chaperone/usher” family, channels that not only provide a pathway for certain substances to leave a cell but also participate in preparing the substance for secretion. In this case, PapC gathers the “parts” that make up the adhesive and then guides the assembled adhesive out of the cell.

Li and his colleagues found that PapC consists of two main structural elements, with each part containing one opening, or pore. Each pore is approximately two nanometers (billionths of a meter) in diameter, and the entire structure is 11 nanometers in length and seven nanometers wide.

While this structure might suggest that PapC uses both pores simultaneously, the researchers think that only one of the two pores may be in use at once. However, the twin pore configuration might be necessary to coordinate the assembly and secretion of the adhesive. This is consistent with other membrane proteins that perform similar functions. “Our finding provides new insight into how the adhesive protein is assembled and secreted, but we need to know more about this process,” said Li. “A greater understanding of this will aid in the study and treatment of urinary tract infections and other related diseases.”

To determine the structure, the researchers grew a two-dimensional crystal of PapC – a sheet with a thickness of just one protein. To image individual proteins in the crystal, they used a technique called cryo-electron microscopy. In this method, the crystal is cooled to about minus 300 degrees Fahrenheit using liquid nitrogen and placed in an electron microscope. This device bombards the sample with high-energy electrons, which scatter off the atoms in the crystal. A lens inside the microscope focuses these electrons, forming a high-resolution image, which is recorded using film or a digital camera. The recorded images are analyzed by a computer, yielding the structure of the protein molecule.

This method produced a top-down image of the protein channel from an “untilted” sheet of crystals – that is, the electron beam hit the sheet head-on. To determine the channel’s three-dimensional structure, Li and his group plan to perform additional high-resolution imaging experiments using the same crystal sheet, but tilting it to large angles. This will allow the electrons to scatter off and produce an image of the protein channel’s other sides.

This research is a collaborative effort between researchers in Brookhaven Lab’s Biology Department, Tianbo Liu of Brookhaven’s Physics Department, and David Thanassi, a biologist in Stony Brook University’s Department of Molecular Genetics and Microbiology. The research was funded by a Brookhaven Laboratory Directed Research and Development grant, the National Institutes of Health, and the Office of Biological and Environmental Research within the U.S. Department of Energy’s Office of Science.

Laura Mgrdichian | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>