Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Predator Environment Has Unexpected Impact on Aging in Fish

09.11.2004


UC Riverside Researchers Find that Fish Living in High-Predator Environments Challenge Classic Evolutionary Theories



Classic evolutionary theories of senescence, or the evolution of the rate at which organisms deteriorate as they age, have been challenged by the findings of researchers at the University of California, Riverside.

In the 1950s, Peter Medawar, winner of a Nobel Prize for medicine, and George Williams, a renowned evolutionary biologist, developed theories for the evolution of senescence, which predicted that organisms that are exposed to high mortality imposed by external factors, like disease or predation, will evolve to deteriorate more rapidly as they get older. Their predictions have been widely accepted and are supported by some experiments. Now, a study by UC Riverside researchers comparing fish living in high- and low-predator environments has found that these classically held theories of aging fail to predict how aging has evolved in nature.


The research findings of David Reznick, a professor of biology at UCR, were published in an article titled “Effects of Extrinsic Mortality on the Evolution of Senescence in Guppies” in the Oct. 28 issue of Nature. Co-authors included UCR colleagues Michael J. Bryant and Derek Roff; and from Colorado State University, biologists Cameron K. and Dionna E. Ghalambor.

The research group studied 240 individually reared guppies, derived from four natural populations. The grandparents of these fish were collected from two watersheds in the Caribbean island of Trinidad. Each watershed held populations that lived either with or without predators and hence experienced either high or low mortality rates. The researchers evaluated aging in these fish by comparing their life spans, mortality rates, fertility, and their swimming performance. Some of their results were not predicted by theory. “We instead found that senescence was a mosaic of traits,” said Reznick. “The high-predation guppies have longer average and maximum lifespans. They have lower mortality rates throughout their lives. They have higher fecundity throughout their lives, plus the rate at which fecundity declines with age (a measure of reproductive senescence) declines less rapidly with age.”

The only aspect of their results that was consistent with classical predictions was the rate of decline in acceleration and maximum swimming speed, which are analyses of neuromuscular performance. In youth, guppies from high-predation environments are faster than those from low predation environments. All guppies slowed down with age, but the rate of decline for fish in high-predation environments was faster so that, in old age, they were no longer faster than their low-predation counterparts.

The composite picture is that all of these fish deteriorate with age, but the comparative rates of deterioration is a mix of responses, most of which do not correspond to classical theory. The researchers give three possible reasons for the unexpected results. All of these reasons are derived from newer theories for the evolution of senescence that have yet to receive serious consideration.

The first hinges on body size and fertility. Guppies in the high-predator environment grew more quickly and their rate of reproduction increased more rapidly with age, which offset some of the mortality rate differences with their low-predator counterparts.

Secondly, as predators killed guppies, they also reduced the population density of the survivors who, in turn, experienced higher food availability. More resources for the survivors can offset some of the predicted effects of higher mortality.

Thirdly, fish living in the high-predator environment may benefit from natural selection. Predators cull those who are slower and leave a higher proportion of quick fish that have high reproductive potential.

A high-predation environment therefore tends to select for fish that are quicker, live longer and maintain a higher level of performance and fertility, but whose swimming speed drops off more quickly with age. The differences between these results and the classical predictions gives cause to take the new, more derived, theories for the evolution of the aging process more seriously.

A National Science Foundation grant and the Academic Senate of the University of California supported the research.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>