Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU team develops enhanced algorithm for detecting changes in cancer genomes

09.11.2004


Researchers at New York University’s Courant Institute of Mathematical Sciences have developed a new algorithm that can lead to more accurate detection of cancer genes than previous versions. The algorithm, published in the latest issue of the Proceedings of the National Academy of Sciences (PNAS), can also be applied to the multiple biomedical technologies (e.g., different kinds of micro-arrays) used to analyze cancer patients’ genomes.



Headed by NYU Professor Bud Mishra, the research team developed the algorithm to detect the genetic differences between normal cells and cancer cells. Its application reveals several excess as well as missing copies of DNA segments associated with various forms of cancer and ultimately, points to locations of both oncogenes and tumor suppressor genes. In addition, the algorithm can be used to account for the varied genomes present across human population.

An earlier version of the algorithm as well as several other competing algorithms were capable of dealing with only cancer data or only polymorphism data and were unable to separate variations in cancerous and non-cancerous genes in a single framework.


Mishra’s team, which forms NYU’s Bioinfomatics Group, has previously examined new genomic technology for mapping and sequencing with single molecules, models of genome evolution, and computational and systems biology models of biological processes like apoptosis, cell divisions, and others involved in cancer.

Two senior research scientists from the Bioinformatics Group, Raoul-Sam Daruwala and Archisman Rudra, collaborated with Mishra to devise the algorithm and create its software implementation. Daruwala, Rudra, and Mishra were joined in the study by colleagues from Cold Spring Harbor Laboratory and NYU School of Medicine.

The algorithm runs through Valis, a software environment developed by Mishra and Courant’s Salvatore Paxia in 2001, with the help of a New York State Office of Science, Technology and Academic Research (NYSTAR) grant. The software will be made available on-line in mid-December. This research was also funded by the Army’s Prostate Cancer Research Program (PCRP).

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>