Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU team develops enhanced algorithm for detecting changes in cancer genomes

09.11.2004


Researchers at New York University’s Courant Institute of Mathematical Sciences have developed a new algorithm that can lead to more accurate detection of cancer genes than previous versions. The algorithm, published in the latest issue of the Proceedings of the National Academy of Sciences (PNAS), can also be applied to the multiple biomedical technologies (e.g., different kinds of micro-arrays) used to analyze cancer patients’ genomes.



Headed by NYU Professor Bud Mishra, the research team developed the algorithm to detect the genetic differences between normal cells and cancer cells. Its application reveals several excess as well as missing copies of DNA segments associated with various forms of cancer and ultimately, points to locations of both oncogenes and tumor suppressor genes. In addition, the algorithm can be used to account for the varied genomes present across human population.

An earlier version of the algorithm as well as several other competing algorithms were capable of dealing with only cancer data or only polymorphism data and were unable to separate variations in cancerous and non-cancerous genes in a single framework.


Mishra’s team, which forms NYU’s Bioinfomatics Group, has previously examined new genomic technology for mapping and sequencing with single molecules, models of genome evolution, and computational and systems biology models of biological processes like apoptosis, cell divisions, and others involved in cancer.

Two senior research scientists from the Bioinformatics Group, Raoul-Sam Daruwala and Archisman Rudra, collaborated with Mishra to devise the algorithm and create its software implementation. Daruwala, Rudra, and Mishra were joined in the study by colleagues from Cold Spring Harbor Laboratory and NYU School of Medicine.

The algorithm runs through Valis, a software environment developed by Mishra and Courant’s Salvatore Paxia in 2001, with the help of a New York State Office of Science, Technology and Academic Research (NYSTAR) grant. The software will be made available on-line in mid-December. This research was also funded by the Army’s Prostate Cancer Research Program (PCRP).

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>