Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU team develops enhanced algorithm for detecting changes in cancer genomes

09.11.2004


Researchers at New York University’s Courant Institute of Mathematical Sciences have developed a new algorithm that can lead to more accurate detection of cancer genes than previous versions. The algorithm, published in the latest issue of the Proceedings of the National Academy of Sciences (PNAS), can also be applied to the multiple biomedical technologies (e.g., different kinds of micro-arrays) used to analyze cancer patients’ genomes.



Headed by NYU Professor Bud Mishra, the research team developed the algorithm to detect the genetic differences between normal cells and cancer cells. Its application reveals several excess as well as missing copies of DNA segments associated with various forms of cancer and ultimately, points to locations of both oncogenes and tumor suppressor genes. In addition, the algorithm can be used to account for the varied genomes present across human population.

An earlier version of the algorithm as well as several other competing algorithms were capable of dealing with only cancer data or only polymorphism data and were unable to separate variations in cancerous and non-cancerous genes in a single framework.


Mishra’s team, which forms NYU’s Bioinfomatics Group, has previously examined new genomic technology for mapping and sequencing with single molecules, models of genome evolution, and computational and systems biology models of biological processes like apoptosis, cell divisions, and others involved in cancer.

Two senior research scientists from the Bioinformatics Group, Raoul-Sam Daruwala and Archisman Rudra, collaborated with Mishra to devise the algorithm and create its software implementation. Daruwala, Rudra, and Mishra were joined in the study by colleagues from Cold Spring Harbor Laboratory and NYU School of Medicine.

The algorithm runs through Valis, a software environment developed by Mishra and Courant’s Salvatore Paxia in 2001, with the help of a New York State Office of Science, Technology and Academic Research (NYSTAR) grant. The software will be made available on-line in mid-December. This research was also funded by the Army’s Prostate Cancer Research Program (PCRP).

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>