Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Painting’ technique successfully transfers gene therapy to heart

08.11.2004


In experiments with pigs, scientists at Johns Hopkins have successfully used a technique called "gene painting" to target gene therapy to a specific region of the heart and change the heart’s rhythm.



"Getting the genes where we want them has been a key limiting factor in the successful development of gene therapies for heart conditions," said cardiac electrophysiologist Kevin Donahue, M.D., an associate professor at The Johns Hopkins University School of Medicine and its Heart Institute. "This new technique brings us one step closer to making gene therapies that can be tested on specific heart problems."

The technique, if future studies in pigs and in humans are promising, could help in the development and delivery of future gene therapies for atrial fibrillation, a common ailment in which the electrical signaling that triggers the heartbeat goes awry.


Donahue led a controlled study that evaluated whether a gene therapy, using a gene called HERG-G628S that helps regulate the heartbeat, could effectively alter the heartbeat in 20 pigs with an irregular heart rhythm. The gene therapy was contained in a plastic, gel-like substance that was "painted" onto the surface of the right atrium of the heart. The gel also contained a dye so that its spread could be tracked inside the organ. After three weeks, the heartbeat had returned to normal, and the dye had penetrated only the atria.

Targeted Modification of Atrial Electrophysiology by Homogeneous Transmural Atrial Gene Transfer. Kan Kikuchi, Tetsuo Sasano, Amy McDonald, Kevin Mills and Kevin Donahue.

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>