Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic testing can identify ischemic and nonischemic heart failure

08.11.2004


Researchers at Johns Hopkins have shown that genetic testing can be effectively used to distinguish between heart failure patients who suffer from ischemic or nonischemic forms of the disease. Using groupings or clusters of a patient’s gene expression to compare to a diseased "test" set that identifies the cause of heart failure, the Hopkins team assembled a 90-gene profile to determine which type of heart failure had most likely developed. Results showed the test profile to be highly accurate, with 90 percent specificity.



The findings could, if affirmed and adapted to a standardized and affordable test format, someday aid physicians in the diagnosis of heart failure and help determine which kind of therapy is best to use for the condition. In ischemic heart disease, the patient’s arteries have narrowed and the heart cannot pump normally because blood flow (and thus oxygen) is often restricted to the heart muscle. In nonischemic forms of the disease, the heart cannot pump normally because the heart muscle has often enlarged for other reasons, such as physical deformity or alcohol abuse. Both conditions can lead to cardiac arrest or more gradual heart failure as the muscle weakens over time.

"The gene expression differences between various forms of cardiovascular disease are poorly understood, despite the fact that we know there are major differences in what is happening at the cellular level," said Michelle Kittleson, M.D., cardiology fellow at the Johns Hopkins Heart Institute and lead author of the study to be presented at the American Heart Association’s Scientific Sessions 2004 on Nov. 6, as a finalist for the Samuel A. Levine Young Clinical Investigator Award. "Our study shows that gene expression profiling for heart failure patients is not only possible, but accurate as well. Based on these initial findings, we hope to close the gaps in our understanding of the gene expression patterns underlying heart failure and treatments for the illness. Ultimately, we hope to be able to use genetic profiling to classify patients according to their risk of developing all kinds of heart disease."


To create a gene expression profile, or test, the Hopkins team collected 16 biopsy tissue samples, six from patients with the ischemic form of the disease and 10 from nonischemic cases, all with end-stage heart failure. Most of the test samples came from heart transplant patients at Hopkins in the last 20 years. Using a biostatistical technique called prediction analysis, the researchers identified the 90 genes that best distinguished the two kinds of heart failure. The large number of genes used also improved accuracy of the test.

This gene profile was later validated by testing it against 38 other tissue samples, including 14 provided from the University of Minnesota. These test samples involved tissue from all stages of heart failure, including end-stage, post-LVAD (a type of heart surgery) and biopsy samples from newly diagnosed patients.

"Now that we know we can genetically profile heart patients according to ischemic and nonischemic heart disease, our next step is to develop a test that can be used in a clinical setting," said senior study author and cardiologist Joshua Hare, M.D., a professor of medicine at the Heart Institute. "Ischemic patients need to be monitored more closely in case they develop drug resistance and require surgery to unblock clogged arteries. Knowing which patients to treat and how closely to monitor them could significantly improve how well physicians manage the disease and, consequently, improve health outcomes."

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>