Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic testing can identify ischemic and nonischemic heart failure

08.11.2004


Researchers at Johns Hopkins have shown that genetic testing can be effectively used to distinguish between heart failure patients who suffer from ischemic or nonischemic forms of the disease. Using groupings or clusters of a patient’s gene expression to compare to a diseased "test" set that identifies the cause of heart failure, the Hopkins team assembled a 90-gene profile to determine which type of heart failure had most likely developed. Results showed the test profile to be highly accurate, with 90 percent specificity.



The findings could, if affirmed and adapted to a standardized and affordable test format, someday aid physicians in the diagnosis of heart failure and help determine which kind of therapy is best to use for the condition. In ischemic heart disease, the patient’s arteries have narrowed and the heart cannot pump normally because blood flow (and thus oxygen) is often restricted to the heart muscle. In nonischemic forms of the disease, the heart cannot pump normally because the heart muscle has often enlarged for other reasons, such as physical deformity or alcohol abuse. Both conditions can lead to cardiac arrest or more gradual heart failure as the muscle weakens over time.

"The gene expression differences between various forms of cardiovascular disease are poorly understood, despite the fact that we know there are major differences in what is happening at the cellular level," said Michelle Kittleson, M.D., cardiology fellow at the Johns Hopkins Heart Institute and lead author of the study to be presented at the American Heart Association’s Scientific Sessions 2004 on Nov. 6, as a finalist for the Samuel A. Levine Young Clinical Investigator Award. "Our study shows that gene expression profiling for heart failure patients is not only possible, but accurate as well. Based on these initial findings, we hope to close the gaps in our understanding of the gene expression patterns underlying heart failure and treatments for the illness. Ultimately, we hope to be able to use genetic profiling to classify patients according to their risk of developing all kinds of heart disease."


To create a gene expression profile, or test, the Hopkins team collected 16 biopsy tissue samples, six from patients with the ischemic form of the disease and 10 from nonischemic cases, all with end-stage heart failure. Most of the test samples came from heart transplant patients at Hopkins in the last 20 years. Using a biostatistical technique called prediction analysis, the researchers identified the 90 genes that best distinguished the two kinds of heart failure. The large number of genes used also improved accuracy of the test.

This gene profile was later validated by testing it against 38 other tissue samples, including 14 provided from the University of Minnesota. These test samples involved tissue from all stages of heart failure, including end-stage, post-LVAD (a type of heart surgery) and biopsy samples from newly diagnosed patients.

"Now that we know we can genetically profile heart patients according to ischemic and nonischemic heart disease, our next step is to develop a test that can be used in a clinical setting," said senior study author and cardiologist Joshua Hare, M.D., a professor of medicine at the Heart Institute. "Ischemic patients need to be monitored more closely in case they develop drug resistance and require surgery to unblock clogged arteries. Knowing which patients to treat and how closely to monitor them could significantly improve how well physicians manage the disease and, consequently, improve health outcomes."

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>