Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New brain cells develop during alcohol abstinence

08.11.2004


University of North Carolina at Chapel Hill scientists have reported - for the first time - a burst in new brain cell development during abstinence from chronic alcohol consumption.



The UNC findings, from research at UNC’s Bowles Center for Alcohol Studies, were based on an animal model of chronic alcohol dependence, in which adult rats were given alcohol over four days in amounts that produced alcohol dependency. The study is in the Nov. 3 issue of the Journal of Neuroscience.

In 2002, Dr. Fulton T. Crews, Bowles Center director, and Bowles Center research associate Dr. Kim Nixon were the first to report that alcohol, during intoxication, has a detrimental effect on the formation of new neurons in the adult rat hippocampus. This brain region is important for learning and memory - in animals and humans - and is linked to psychiatric disorders, particularly depression. "When used in excess, alcohol damages brain structure and function. Alcoholics have impairments in the ability to reason, plan or remember," said Crews, also professor of pharmacology and psychiatry in UNC’s School of Medicine. "A variety of psychological tests show alcoholics have a difficulty in ability to understand negative consequences."


In the new study, senior co-author Crews and co-author Nixon found inhibition of neurogenesis, or brain cell development, during alcohol dependency, followed by a pronounced increase in new neuron formation in the hippocampus within four-to-five weeks of abstinence. This included a twofold burst in brain cell proliferation at day seven of abstinence. "We looked at dividing cells after our four-day binge model of alcohol dependency and confirmed what we previously observed: When the animals were intoxicated, the measure of dividing cells decreases," said Nixon. "And after abstinence for one week, we saw a huge burst in the number of new cells being born."

Nixon said the findings were confirmed by use of several biological markers, including bromodeoxyuridine, BrdU. Animals were injected with BrdU, which labels dividing cells. BrdU inserts itself into the DNA of a cell during cell division, so that it’s found only in cells that have divided during the two hours that the substance is in the animals’ system.

Imaging studies report shrinkage in brain ventricles - the fluid-filled spaces within the brain - indicating that the brain is growing as the spaces shrink as alcoholics recover from alcohol dependence. "And when they stop drinking, you can show in a period of weeks, months, years, the brain grows back, there’s a return of metabolic activity, and cognitive tests show a return of function," Crews said.

The findings may have significant implications for treatment of alcoholism during recovery. The discovery of regeneration of neurons in recovery opens up new avenues of therapies aimed at regeneration of brain cells. "When animals learn, they make more neurons. When animals exercise, they make more neurons and learn faster, as well," Crews said. "Pharmacological agents such as antidepressants and behaviors such as running, increased physical activity and learning experiences apparently help regulate the process of neurogenesis," he added. "Our research suggests they could be considered in the treatment of chronic alcohol dependency."

In their report, Nixon and Crews also said that their findings for the first time provide a neuronal regeneration mechanism that may underlie the return of normal cognitive function and brain volume associated with recovery from addiction during abstinence from alcohol. "This is really the first biological measure of a major change in neuronal structure consistent with changes that are known to occur when individuals are able to stop drinking," said Crews.

For decades, neuroscientists believed the number of new cells, or neurons, in the adult brain was fixed early in life. Adaptive processes such as learning, memory and mood were thought tied to changes in synapses, connections between neurons.

More recently, studies have shown that the adult human brain is capable of producing new brain cells throughout life, a neurogenesis resulting in formation of hundreds of thousands of new neurons each month. "Prior to our work, everyone merely assumed that glia, the supporting cells of the brain, regenerated or that existing brain cells altered their connections," said Nixon. "We have shown a burst in new cell birth that may be part of the brain’s recovery after the cessation of alcohol."

Chronic alcoholism, a disease affecting more than 8 percent of the adult U.S. population, or more than 17 million Americans, produces cognitive impairments and decreased brain volumes, both of which are partially reversed during abstinence.

Alcohol dependence also is associated with depression, which is consistent with inhibition of neurogenesis. Cessation from alcohol is associated with improved cognitive abilities, Crews said.

L.H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>