Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Color Sensitive Atomic Switch in Bacteria

05.11.2004


Researchers using extremely high resolution imaging have found an atomic switch capable of discriminating color in a bacterial membrane protein.



In a paper posted today on Science Express, the rapid advance publication page of Science, scientists from The University of Texas Medical School at Houston and the University of California , Irvine , describe the versatile light-sensing protein at levels of resolution smaller than a nanometer – one billionth of a meter.

“High-resolution X-ray crystallography revealed the light-absorbing part of the protein was present in two alternative positions, suggesting to us that light of different colors drives this protein back and forth between two differently colored states of the protein,” said corresponding author John L. Spudich, Ph.D., director of the Center for Membrane Biology in the UT Medical School Department of Biochemistry and Molecular Biology. “Chemical analysis and spectroscopic methods then proved that the switch, buried in the middle of this membrane-embedded protein, similar in structure to our visual pigments, is controlled by blue versus orange photon absorption.” Spudich said.


That function makes the protein novel among its family of light-sensing proteins known as rhodopsins, which are present in microbes and higher animals. In human eyes, rhodopsin is the light-absorbing pigment of the rods, located in the retina. The team studied a new-found rhodopsin on the surface membrane of the bacterium Anabaena, classified as “blue-green algae” or cyanobacteria, which rely on photosynthesis to generate energy.

Having a single sensory protein capable of distinguishing color would provide Anabaena with information about the color of light available in its environment, enabling more efficient harvesting of light for photosynthesis, Spudich said. “Understanding rhodopsins helps us understand the large number of related membrane receptors involved in cell signaling that govern biological functions,” Spudich said. In the longer term, the novel protein found in Anabaena has the potential to be used in nano-machinery as a color-sensor; however the authors point out that this practical application is years in the future.

First author of the paper is Lutz Vogeley, a graduate student in the UC Irvine Department of Molecular Biology and Biochemistry. Senior authors are Dr. Spudich and Dr. Hartmut Luecke, Ph.D., professor of molecular biology and biochemistry and of physiology and biophysics at UC-Irvine. Co-authors include Oleg Sineshchekov, Ph.D., of Moscow State University in Russia, and visiting professor in the UT Center for Biology, and research fellow Vishwa Trivedi, Ph.D., and Jun Sasaki, Ph.D., assistant professor, both of the UT Center for Membrane Biology. “One of the key frontiers of biomedical science in the genomic era is the crucial role of cell membranes in normal cell function and disease states,” said Spudich, who holds the Robert A. Welch Distinguished Chair in Chemistry and is a professor in the UT Graduate School of Biomedical Sciences. “Ask virtually any investigator and you’ll find his or her research program bumps up against a membrane.”

Cell membrane surfaces and their exposed proteins are the most accessible targets to treat human tissue or destroy infectious microbes, he said. More than 60 percent of medications target membrane proteins on human cells and many antibiotics target membranes on pathogens.

Scott Merville | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>