Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dopamine key to learning likes and dislikes

05.11.2004


For those who have wondered why they like or dislike certain things, or how they decide what to order from a menu, a team of researchers at the University of Colorado at Boulder says it’s dopamine.



A CU-Boulder team studying Parkinson’s disease patients found strong evidence that dopamine in the brain plays a key role in how people implicitly learn to make choices that lead to good outcomes, while avoiding bad ones. The finding could help researchers understand more about how the brain works and could lead to a better understanding and treatment of brain disorders like schizophrenia, according to CU-Boulder psychology graduate student Michael Frank, who led the study.

A paper on the subject by Frank, CU-Boulder psychology Associate Professor Randall O’Reilly and Lauren Seeberger of the Colorado Neurological Institute’s Movement Disorders Center appears in the Nov. 5 issue of Science Express, an online version of Science magazine. Often people will get a "gut feeling" that allows them to make a choice depending on how often it was associated with positive outcomes in the past. But people with Parkinson’s disease often have difficulty making these kinds of choices, Frank said.


To understand why, they developed a computer model of the effects of Parkinson’s disease and the medications used to treat it in the brain. From this model they predicted that Parkinson’s patients would differ in their decision making depending on whether or not they were taking their medication, which they confirmed in a subsequent study.

They found that patients on their medication were overly influenced by positive outcomes, while those who were off their medication were more influenced by negative outcomes, according to Frank. "Because Parkinson’s disease is caused by lower levels of the brain chemical dopamine, and the medications increase concentrations of this chemical, these results provide strong evidence that dopamine levels play a critical role in developing our likes and dislikes," Frank said.

Much of what is known about the brain comes from studying diseases that affect it, according to O’Reilly. So to understand how healthy people learn from their decisions, it helps to determine the conditions where learning is degraded. "Studying Parkinson’s patients helps us to understand how healthy people learn, by showing us what’s going on under the hood," O’Reilly said. "It’s kind of like when your car makes a funny noise and you discover how the fan belt works. In this case we looked at a disease that has showed us more about dopamine’s role in the learning system of the brain."

Dopamine also plays a critical role in many other neurological conditions including attention deficit disorder, schizophrenia and drug addiction, so these findings may have broader implications, according to Frank. For example, by more precisely understanding the detailed effects of dopamine in the brain, drugs could be designed to more directly target beneficial actions, without as many unwanted side effects. "This research clearly showed that current Parkinson’s medications have undesirable side effects on learning and decision making," Frank said. Other researchers have documented a sudden onset of gambling episodes associated with patients taking these medications. These episodes may have been caused by the increased sensitivity to positive outcomes caused by the medications, together with an insensitivity to losses, he said. "When experiencing a loss, dopamine levels are normally low in the brain, and the medication may prevent this from happening," Frank said.

By exploring the effects of potential drugs on different brain areas and circuits, the computer model can be used to find drugs that restore dopamine balance without causing these or other side effects. Similar applications to ADD are also possible. Currently, ADD is treated with drugs such as Ritalin that cause more dopamine to remain available in the brain, but these drugs also may block certain forms of learning, causing unwanted side effects. "This work helps us understand how the brain learns from experience, and translates this learning into decisions, the kinds of decisions we make on a daily basis, often without much conscious thought," Frank said. "Understanding how this process works in detail may help in developing strategies to generally improve our learning and decision-making abilities."

Randall O’Reilly | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Life Sciences:

nachricht Viruses support photosynthesis in bacteria – an evolutionary advantage?
23.02.2017 | Technische Universität Kaiserslautern

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>