Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dopamine key to learning likes and dislikes


For those who have wondered why they like or dislike certain things, or how they decide what to order from a menu, a team of researchers at the University of Colorado at Boulder says it’s dopamine.

A CU-Boulder team studying Parkinson’s disease patients found strong evidence that dopamine in the brain plays a key role in how people implicitly learn to make choices that lead to good outcomes, while avoiding bad ones. The finding could help researchers understand more about how the brain works and could lead to a better understanding and treatment of brain disorders like schizophrenia, according to CU-Boulder psychology graduate student Michael Frank, who led the study.

A paper on the subject by Frank, CU-Boulder psychology Associate Professor Randall O’Reilly and Lauren Seeberger of the Colorado Neurological Institute’s Movement Disorders Center appears in the Nov. 5 issue of Science Express, an online version of Science magazine. Often people will get a "gut feeling" that allows them to make a choice depending on how often it was associated with positive outcomes in the past. But people with Parkinson’s disease often have difficulty making these kinds of choices, Frank said.

To understand why, they developed a computer model of the effects of Parkinson’s disease and the medications used to treat it in the brain. From this model they predicted that Parkinson’s patients would differ in their decision making depending on whether or not they were taking their medication, which they confirmed in a subsequent study.

They found that patients on their medication were overly influenced by positive outcomes, while those who were off their medication were more influenced by negative outcomes, according to Frank. "Because Parkinson’s disease is caused by lower levels of the brain chemical dopamine, and the medications increase concentrations of this chemical, these results provide strong evidence that dopamine levels play a critical role in developing our likes and dislikes," Frank said.

Much of what is known about the brain comes from studying diseases that affect it, according to O’Reilly. So to understand how healthy people learn from their decisions, it helps to determine the conditions where learning is degraded. "Studying Parkinson’s patients helps us to understand how healthy people learn, by showing us what’s going on under the hood," O’Reilly said. "It’s kind of like when your car makes a funny noise and you discover how the fan belt works. In this case we looked at a disease that has showed us more about dopamine’s role in the learning system of the brain."

Dopamine also plays a critical role in many other neurological conditions including attention deficit disorder, schizophrenia and drug addiction, so these findings may have broader implications, according to Frank. For example, by more precisely understanding the detailed effects of dopamine in the brain, drugs could be designed to more directly target beneficial actions, without as many unwanted side effects. "This research clearly showed that current Parkinson’s medications have undesirable side effects on learning and decision making," Frank said. Other researchers have documented a sudden onset of gambling episodes associated with patients taking these medications. These episodes may have been caused by the increased sensitivity to positive outcomes caused by the medications, together with an insensitivity to losses, he said. "When experiencing a loss, dopamine levels are normally low in the brain, and the medication may prevent this from happening," Frank said.

By exploring the effects of potential drugs on different brain areas and circuits, the computer model can be used to find drugs that restore dopamine balance without causing these or other side effects. Similar applications to ADD are also possible. Currently, ADD is treated with drugs such as Ritalin that cause more dopamine to remain available in the brain, but these drugs also may block certain forms of learning, causing unwanted side effects. "This work helps us understand how the brain learns from experience, and translates this learning into decisions, the kinds of decisions we make on a daily basis, often without much conscious thought," Frank said. "Understanding how this process works in detail may help in developing strategies to generally improve our learning and decision-making abilities."

Randall O’Reilly | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>