Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M researcher examines the cell’s housekeeping habits

05.11.2004


The cells of higher organisms have an internal mechanism for chewing up and recycling parts of themselves, particularly in times of stress, like starvation and disease. But nobody is quite sure yet whether this recently discovered process protects cells, or causes damage.



This process of internal house-cleaning in the cell is called autophagy – literally self-eating – and it is now considered the second form of programmed cell death (PCD). Apoptosis, the first kind of programmed cell death to be characterized, is now also known as Type I PCD.

Genes governing Type II PCD, autophagy, have been identified recently in many species, starting with baker’s yeast, and some of the environmental triggers that start the process are being found. But there is still quite a bit of science to do before autophagy can be understood as either a good thing or a bad thing. The evidence points both ways. "It’s likely to be both, depending on when it happens," said Daniel Klionsky, a research professor at the University of Michigan Life Sciences Instituteand professor of molecular cellular and developmental biology and biological chemistry.


Klionsky, who has been studying autophagy in yeast, has written a review article on the latest work in the field with post-doctoral fellow Takahiro Shintani that is featured on the cover of the Nov. 5 edition of Science magazine. Klionsky also recently edited the authoritative book on autophagy.

A cell undergoing autophagy assembles tiny capsules called vesicles that surround and chew up parts of the cellular machinery from within. Autophagic vesicles have been seen in cells undergoing programmed cell death, but the evidence is not clear yet whether they’re trying to protect the cell from apoptosis, or hastening its demise. "Autophagy is the only way to get rid of damaged parts of the cell without trashing the whole thing. So in a nerve cell, for example, you’d want autophagy to correct problems without destroying the cell."

High levels of autophagic vesicles also have been noted in some forms of degenerative muscle disease, and in degenerative nervous system diseases like Huntington’s, Parkinson’s, Alzheimer’s and ALS, (Lou Gehrig’s disease). But it’s not clear why the vesicles are accumulating. They may be building up because they aren’t being used, or it may be that the distressed cells are producing more vesicles. "Until the genes for autophagy were found in yeast, the whole field was sort of stumped," Klionsky said. Now researchers are able to identify autophagy genes in humans and other organisms, including mice, and can tinker with the regulation of the process to see how it works.

Cancer researchers have been trying to figure out how to turn apoptosis on as a way to have cancer cells kill themselves. Being able to control autophagy may prove useful as well, Klionsky said. In fact, any kind of disease where damaged parts accumulate inside the cell might benefit from being able to control autophagy, he said. "If you could turn it on at will, it could be used as a therapy," he said.

Autophagy probably works both to promote and prevent cancer. Its works as a tumor suppressor when it limits cell size and removes damaged machinery in the cell that could generate free radicals or create genetic mutations. But, paradoxically, autophagy may protect cancer cells against some cancer treatments and it might also make cancer cells live longer by recycling cellular parts in the nutrient-poor environment inside a tumor. Intriguingly, a line of laboratory mice with suppressed autophagy also appears to have a higher rate of spontaneous tumors, Klionsky said.

Autophagy helps the cell fight infection by some kinds of invading bacteria and viruses, by cleaning them out of the cell’s interior without having to discard the entire cell. As a result, some pathogens try to escape autophagy. For example, the virus that causes Herpes carries a gene that blocks autophagy. The bacteria that cause Legionnaire’s Disease actually hide inside the vesicles to reproduce.

Autophagy may even provide a clue to the mythical fountain of youth. Autophagy activity is known to decrease with aging, and experiments in which autophagy was blocked in the C. elegans nematode worm resulted in dramatically shorter life spans for the 1 millimeter creatures. Conversely, more autophagy may prolong life. This fits with findings that caloric restriction can extend the life span in rats, since near-starvation triggers more autophagy as the cells recycle parts of themselves for fuel. Sustained autophagy may also increase longevity by protecting cells against free radical damage and mutations in DNA. "This is becoming a very hot field," Klionsky said. "We have a lot of really interesting questions to explore in autophagy."

Karl Leif Bates | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Scientists decipher key principle behind reaction of metalloenzymes
15.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht New method to map miniature brain circuits
15.01.2018 | The Francis Crick Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>