Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The key to the lock that controls nitrogen fixation

04.11.2004


“Bacteria that fix nitrogen only do so when they sense that there is very little nitrogen available in their environment,” says Professor Ray Dixon (Project Leader at the JIC. “Normally the genes for nitrogen fixation are locked off and only unlocked and used when nitrogen levels in the environment fall. We have discovered a key piece of biochemistry that allows us to better understand how the lock operates and so may allow us to alter how it works”.

The bacterium Azotobacter vinelandii is able to fix atmospheric nitrogen when available nitrogen in its environment falls below a threshold level. Nitrogen fixation requires a great deal of energy and so the genes that carry out nitrogen fixation (so called nif genes) are tightly regulated and switched off when not required.

The nif genes are regulated by the action of two proteins, called NifL and NifA. NifA stimulates the activity of nif genes, while NifL normally binds to NifA and renders it inactive. Thus whether the nif genes are active or not depends on the interaction between these two proteins. Both proteins are sensitive to biochemical signals that occur in the bacterial cell when conditions are right for nitrogen fixation. The proteins’ physical shape and structure alters in response to these signals and this affects their ability to bind to one another. The result is that, when conditions are right for nitrogen fixation, NifA is released from the grip of NifL and is then able to stimulate the activity of the nif genes and so switches on nitrogen fixation by the cell.



The latest research has identified a single amino acid change in the NifL protein that prevents the molecule releasing NifA when the appropriate signals are present [2]. This gives the scientists an important clue about the key processes which operate the lock that controls nitrogen fixation.

The discovery will be reported in the international science journal Proceedings of the National Academy of Sciences US, and is available on line in the PNAS Online Early Edition [3].

[1]
The John Innes Centre (JIC), Norwich, UK is an independent, world-leading research centre in plant and microbial sciences. The JIC has over 850 staff and students. JIC carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. The JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.

[2]
NifA is a sigma factor dependent transcriptional activator that stimulate nif gene activity. Its action is blocked by protein-protein binding with NifL, an anti-activator. NifL is sensitive to the redox and fixed nitrogen status of the cell. Binding of 2-oxoglutarate (an indicator of cell carbon status) to NifA prevents NifL from inhibiting NifA . A critical arginine residue (R306) has been identified in NifL that is required to release NifA under appropriate environmental conditions. Mutation of this residue blocks release of NifA from NifL. The substitution of this arginine significantly alters the conformation of the NifL molecule and inhibits NifA’s response to 2-oxoglutarate. It appears that arginine 306 is critical for coupling the response of NifL to the cellular redox and fixed nitrogen status to a conformational switch that prevents NifL from inhibiting NifA under conditions suitable for nitrogen fixation.

[3]
A crucial arginine residue is required for a conformational switch in NifL to regulate nitrogen fixation in Azotobacter vinelandii. I. Martinez-Argudo, R. Little and R. Dixon. Article #04-05312

Ray Mathias | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.jic.ac.uk

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>