Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The key to the lock that controls nitrogen fixation

04.11.2004


“Bacteria that fix nitrogen only do so when they sense that there is very little nitrogen available in their environment,” says Professor Ray Dixon (Project Leader at the JIC. “Normally the genes for nitrogen fixation are locked off and only unlocked and used when nitrogen levels in the environment fall. We have discovered a key piece of biochemistry that allows us to better understand how the lock operates and so may allow us to alter how it works”.

The bacterium Azotobacter vinelandii is able to fix atmospheric nitrogen when available nitrogen in its environment falls below a threshold level. Nitrogen fixation requires a great deal of energy and so the genes that carry out nitrogen fixation (so called nif genes) are tightly regulated and switched off when not required.

The nif genes are regulated by the action of two proteins, called NifL and NifA. NifA stimulates the activity of nif genes, while NifL normally binds to NifA and renders it inactive. Thus whether the nif genes are active or not depends on the interaction between these two proteins. Both proteins are sensitive to biochemical signals that occur in the bacterial cell when conditions are right for nitrogen fixation. The proteins’ physical shape and structure alters in response to these signals and this affects their ability to bind to one another. The result is that, when conditions are right for nitrogen fixation, NifA is released from the grip of NifL and is then able to stimulate the activity of the nif genes and so switches on nitrogen fixation by the cell.



The latest research has identified a single amino acid change in the NifL protein that prevents the molecule releasing NifA when the appropriate signals are present [2]. This gives the scientists an important clue about the key processes which operate the lock that controls nitrogen fixation.

The discovery will be reported in the international science journal Proceedings of the National Academy of Sciences US, and is available on line in the PNAS Online Early Edition [3].

[1]
The John Innes Centre (JIC), Norwich, UK is an independent, world-leading research centre in plant and microbial sciences. The JIC has over 850 staff and students. JIC carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. The JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.

[2]
NifA is a sigma factor dependent transcriptional activator that stimulate nif gene activity. Its action is blocked by protein-protein binding with NifL, an anti-activator. NifL is sensitive to the redox and fixed nitrogen status of the cell. Binding of 2-oxoglutarate (an indicator of cell carbon status) to NifA prevents NifL from inhibiting NifA . A critical arginine residue (R306) has been identified in NifL that is required to release NifA under appropriate environmental conditions. Mutation of this residue blocks release of NifA from NifL. The substitution of this arginine significantly alters the conformation of the NifL molecule and inhibits NifA’s response to 2-oxoglutarate. It appears that arginine 306 is critical for coupling the response of NifL to the cellular redox and fixed nitrogen status to a conformational switch that prevents NifL from inhibiting NifA under conditions suitable for nitrogen fixation.

[3]
A crucial arginine residue is required for a conformational switch in NifL to regulate nitrogen fixation in Azotobacter vinelandii. I. Martinez-Argudo, R. Little and R. Dixon. Article #04-05312

Ray Mathias | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.jic.ac.uk

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>