Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The key to the lock that controls nitrogen fixation

04.11.2004


“Bacteria that fix nitrogen only do so when they sense that there is very little nitrogen available in their environment,” says Professor Ray Dixon (Project Leader at the JIC. “Normally the genes for nitrogen fixation are locked off and only unlocked and used when nitrogen levels in the environment fall. We have discovered a key piece of biochemistry that allows us to better understand how the lock operates and so may allow us to alter how it works”.

The bacterium Azotobacter vinelandii is able to fix atmospheric nitrogen when available nitrogen in its environment falls below a threshold level. Nitrogen fixation requires a great deal of energy and so the genes that carry out nitrogen fixation (so called nif genes) are tightly regulated and switched off when not required.

The nif genes are regulated by the action of two proteins, called NifL and NifA. NifA stimulates the activity of nif genes, while NifL normally binds to NifA and renders it inactive. Thus whether the nif genes are active or not depends on the interaction between these two proteins. Both proteins are sensitive to biochemical signals that occur in the bacterial cell when conditions are right for nitrogen fixation. The proteins’ physical shape and structure alters in response to these signals and this affects their ability to bind to one another. The result is that, when conditions are right for nitrogen fixation, NifA is released from the grip of NifL and is then able to stimulate the activity of the nif genes and so switches on nitrogen fixation by the cell.



The latest research has identified a single amino acid change in the NifL protein that prevents the molecule releasing NifA when the appropriate signals are present [2]. This gives the scientists an important clue about the key processes which operate the lock that controls nitrogen fixation.

The discovery will be reported in the international science journal Proceedings of the National Academy of Sciences US, and is available on line in the PNAS Online Early Edition [3].

[1]
The John Innes Centre (JIC), Norwich, UK is an independent, world-leading research centre in plant and microbial sciences. The JIC has over 850 staff and students. JIC carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. The JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.

[2]
NifA is a sigma factor dependent transcriptional activator that stimulate nif gene activity. Its action is blocked by protein-protein binding with NifL, an anti-activator. NifL is sensitive to the redox and fixed nitrogen status of the cell. Binding of 2-oxoglutarate (an indicator of cell carbon status) to NifA prevents NifL from inhibiting NifA . A critical arginine residue (R306) has been identified in NifL that is required to release NifA under appropriate environmental conditions. Mutation of this residue blocks release of NifA from NifL. The substitution of this arginine significantly alters the conformation of the NifL molecule and inhibits NifA’s response to 2-oxoglutarate. It appears that arginine 306 is critical for coupling the response of NifL to the cellular redox and fixed nitrogen status to a conformational switch that prevents NifL from inhibiting NifA under conditions suitable for nitrogen fixation.

[3]
A crucial arginine residue is required for a conformational switch in NifL to regulate nitrogen fixation in Azotobacter vinelandii. I. Martinez-Argudo, R. Little and R. Dixon. Article #04-05312

Ray Mathias | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.jic.ac.uk

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>