Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The key to the lock that controls nitrogen fixation

04.11.2004


“Bacteria that fix nitrogen only do so when they sense that there is very little nitrogen available in their environment,” says Professor Ray Dixon (Project Leader at the JIC. “Normally the genes for nitrogen fixation are locked off and only unlocked and used when nitrogen levels in the environment fall. We have discovered a key piece of biochemistry that allows us to better understand how the lock operates and so may allow us to alter how it works”.

The bacterium Azotobacter vinelandii is able to fix atmospheric nitrogen when available nitrogen in its environment falls below a threshold level. Nitrogen fixation requires a great deal of energy and so the genes that carry out nitrogen fixation (so called nif genes) are tightly regulated and switched off when not required.

The nif genes are regulated by the action of two proteins, called NifL and NifA. NifA stimulates the activity of nif genes, while NifL normally binds to NifA and renders it inactive. Thus whether the nif genes are active or not depends on the interaction between these two proteins. Both proteins are sensitive to biochemical signals that occur in the bacterial cell when conditions are right for nitrogen fixation. The proteins’ physical shape and structure alters in response to these signals and this affects their ability to bind to one another. The result is that, when conditions are right for nitrogen fixation, NifA is released from the grip of NifL and is then able to stimulate the activity of the nif genes and so switches on nitrogen fixation by the cell.



The latest research has identified a single amino acid change in the NifL protein that prevents the molecule releasing NifA when the appropriate signals are present [2]. This gives the scientists an important clue about the key processes which operate the lock that controls nitrogen fixation.

The discovery will be reported in the international science journal Proceedings of the National Academy of Sciences US, and is available on line in the PNAS Online Early Edition [3].

[1]
The John Innes Centre (JIC), Norwich, UK is an independent, world-leading research centre in plant and microbial sciences. The JIC has over 850 staff and students. JIC carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. The JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.

[2]
NifA is a sigma factor dependent transcriptional activator that stimulate nif gene activity. Its action is blocked by protein-protein binding with NifL, an anti-activator. NifL is sensitive to the redox and fixed nitrogen status of the cell. Binding of 2-oxoglutarate (an indicator of cell carbon status) to NifA prevents NifL from inhibiting NifA . A critical arginine residue (R306) has been identified in NifL that is required to release NifA under appropriate environmental conditions. Mutation of this residue blocks release of NifA from NifL. The substitution of this arginine significantly alters the conformation of the NifL molecule and inhibits NifA’s response to 2-oxoglutarate. It appears that arginine 306 is critical for coupling the response of NifL to the cellular redox and fixed nitrogen status to a conformational switch that prevents NifL from inhibiting NifA under conditions suitable for nitrogen fixation.

[3]
A crucial arginine residue is required for a conformational switch in NifL to regulate nitrogen fixation in Azotobacter vinelandii. I. Martinez-Argudo, R. Little and R. Dixon. Article #04-05312

Ray Mathias | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.jic.ac.uk

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>