Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers grow sperm stem cells in laboratory cultures

04.11.2004


Advance could lead to new infertility treatments, source of adult stem cells


Spermatogonial stem cells expressing green fluorescent protein.



A team of researchers working with cells from mice has overcome a technical barrier and succeeded in growing sperm progenitor cells in laboratory culture. The researchers transplanted the cells into infertile mice, which were then able to produce sperm and father offspring that were genetically related to the donor mice. "This advance opens up an exciting range of possibilities for future research, from developing new treatments for male infertility to enhancing the survival of endangered species," said Duane Alexander, M.D., Director of the NICHD. Their research, funded in part by the National Institute of Child Health and Human Development of the National Institutes of Health, will be published online this week in an upcoming issue of Proceedings of the National Academy of Sciences.

Led by Hiroshi Kubota, D.V.M., Ph.D., the team of researchers from the University of Pennsylvania School of Veterinary Medicine in Philadelphia, also included Mary Avarbock and Ralph L. Brinster V.M.D., Ph.D. The researchers succeeded in developing the culture medium containing the precise combination of cellular growth factors needed for the cells to reproduce themselves outside the body. Known as spermatogonial stem cells, the cells are incapable of fertilizing egg cells but give rise to cells that develop into sperm.


In 1994, this same research team developed the means to transplant spermatogonial stem cells from one mouse into another. The recipient mice then produced sperm--fully capable of fertilizing egg cells--with the genetic characteristics of the donor mice. Because they can now grow spermatogonial stem cells in culture, researchers have a ready source of cells that they could manipulate genetically, explained the study’s senior author, Ralph Brinster.

For example, researchers could implant a new gene into a spermatogonial cell, reproduce a large number of spermatogonial cells in the culture medium, and then implant the cells into recipient animals. These animals could then pass the new trait on to their offspring. The ability to introduce a new trait into animals would greatly assist breeders of both livestock and laboratory animals. Moreover, by culturing and freezing spermatogonial stem cells from a valuable livestock animal or an endangered species, researchers could extend the reproductive life of that animal indefinitely. (The researchers developed a technique for successfully freezing and thawing spermatogonial cells in 1996.)

By manipulating the culture media that contains the spermatogonial stem cells, researchers might also be able to induce the spermatogonial cells to develop into sperm cells that could be used to fertilize eggs, providing a method to treat some types of infertility. "This finding is likely to be applicable to humans," Dr. Brinster said. He added that the same growth factors needed to culture the mouse stem cells would likely foster the growth of human spermatogonial cells as well as the cells of other mammals.

Currently, males who undergo chemotherapy that renders them infertile can store their semen so that it can be used at a later date, should they wish to father children. However, this approach results in a less than 50 percent success rate. Boys who are too young to provide a semen sample but who also need such chemotherapy treatments could also be helped by the new technique. Their spermatogonial stem cells could be cultured to increase their numbers, frozen, and reimplanted at a later date, restoring their fertility.

Moreover, the new culture technique would allow researchers to further investigate the potential of spermatogonial stem cells as a source for more versatile adult stem cells to replace diseased or injured tissue. The replacement tissue might be used to help patients with spinal cord injury, or disorders like Parkinson’s disease or heart disease.

To conduct their study, Dr. Kubota and his colleagues began with mice that had been genetically altered to express green fluorescent protein, or GFP, which gives off a green light in the presence of a certain wavelength of light. During key stages of the experiment, tissue from the donor mice gave off a green light.

At the first step, the researchers could distinguish spermatogonial stem cells from the cells used to nurture them in lab cultures by the green light the spermatogonial stem cells gave off. (A photograph of the spermatogonial stem cells appears at http://www.nichd.nih.gov/new/releases/stem_cell.cfm.)

The spermatogonial stem cells also gave off green light when they grew and reproduced in the testes of the recipient mice. Similarly, about half of the baby mice fathered by the recipient mice also glowed green (See photo at http://www.nichd.nih.gov/new/releases/green_brown_mice.cfm.)

Robert Bock | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>