Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers grow sperm stem cells in laboratory cultures

04.11.2004


Advance could lead to new infertility treatments, source of adult stem cells


Spermatogonial stem cells expressing green fluorescent protein.



A team of researchers working with cells from mice has overcome a technical barrier and succeeded in growing sperm progenitor cells in laboratory culture. The researchers transplanted the cells into infertile mice, which were then able to produce sperm and father offspring that were genetically related to the donor mice. "This advance opens up an exciting range of possibilities for future research, from developing new treatments for male infertility to enhancing the survival of endangered species," said Duane Alexander, M.D., Director of the NICHD. Their research, funded in part by the National Institute of Child Health and Human Development of the National Institutes of Health, will be published online this week in an upcoming issue of Proceedings of the National Academy of Sciences.

Led by Hiroshi Kubota, D.V.M., Ph.D., the team of researchers from the University of Pennsylvania School of Veterinary Medicine in Philadelphia, also included Mary Avarbock and Ralph L. Brinster V.M.D., Ph.D. The researchers succeeded in developing the culture medium containing the precise combination of cellular growth factors needed for the cells to reproduce themselves outside the body. Known as spermatogonial stem cells, the cells are incapable of fertilizing egg cells but give rise to cells that develop into sperm.


In 1994, this same research team developed the means to transplant spermatogonial stem cells from one mouse into another. The recipient mice then produced sperm--fully capable of fertilizing egg cells--with the genetic characteristics of the donor mice. Because they can now grow spermatogonial stem cells in culture, researchers have a ready source of cells that they could manipulate genetically, explained the study’s senior author, Ralph Brinster.

For example, researchers could implant a new gene into a spermatogonial cell, reproduce a large number of spermatogonial cells in the culture medium, and then implant the cells into recipient animals. These animals could then pass the new trait on to their offspring. The ability to introduce a new trait into animals would greatly assist breeders of both livestock and laboratory animals. Moreover, by culturing and freezing spermatogonial stem cells from a valuable livestock animal or an endangered species, researchers could extend the reproductive life of that animal indefinitely. (The researchers developed a technique for successfully freezing and thawing spermatogonial cells in 1996.)

By manipulating the culture media that contains the spermatogonial stem cells, researchers might also be able to induce the spermatogonial cells to develop into sperm cells that could be used to fertilize eggs, providing a method to treat some types of infertility. "This finding is likely to be applicable to humans," Dr. Brinster said. He added that the same growth factors needed to culture the mouse stem cells would likely foster the growth of human spermatogonial cells as well as the cells of other mammals.

Currently, males who undergo chemotherapy that renders them infertile can store their semen so that it can be used at a later date, should they wish to father children. However, this approach results in a less than 50 percent success rate. Boys who are too young to provide a semen sample but who also need such chemotherapy treatments could also be helped by the new technique. Their spermatogonial stem cells could be cultured to increase their numbers, frozen, and reimplanted at a later date, restoring their fertility.

Moreover, the new culture technique would allow researchers to further investigate the potential of spermatogonial stem cells as a source for more versatile adult stem cells to replace diseased or injured tissue. The replacement tissue might be used to help patients with spinal cord injury, or disorders like Parkinson’s disease or heart disease.

To conduct their study, Dr. Kubota and his colleagues began with mice that had been genetically altered to express green fluorescent protein, or GFP, which gives off a green light in the presence of a certain wavelength of light. During key stages of the experiment, tissue from the donor mice gave off a green light.

At the first step, the researchers could distinguish spermatogonial stem cells from the cells used to nurture them in lab cultures by the green light the spermatogonial stem cells gave off. (A photograph of the spermatogonial stem cells appears at http://www.nichd.nih.gov/new/releases/stem_cell.cfm.)

The spermatogonial stem cells also gave off green light when they grew and reproduced in the testes of the recipient mice. Similarly, about half of the baby mice fathered by the recipient mice also glowed green (See photo at http://www.nichd.nih.gov/new/releases/green_brown_mice.cfm.)

Robert Bock | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>