Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research team discovers possible genetic mechanism behind congenital heart defects


Findings may lead to genetic tests

Researchers at The Hospital for Sick Children (Sick Kids) and Mount Sinai Hospital (MSH) have discovered a possible genetic mechanism behind congenital heart defects. This finding has implications for understanding how congenital heart defects occur, and may lead to genetic tests for certain defects, such as proteins that determine how genes are expressed. This also opens new insights into how general chromosome properties can relate to specific disease processes. This research is reported in the November 4, 2004 issue of the scientific journal Nature. "It was previously believed that all cells during development contained the same chromatin remodelling proteins that unwind DNA, a process that is important for genes to be turned on. However, we identified one of these proteins, called Baf60c, that is expressed specifically in the developing heart," said Dr. Benoit Bruneau, the study’s co-principal investigator, a Sick Kids scientist and an assistant professor of Molecular and Medical Genetics at the University of Toronto (U of T). "When we completely suppressed the function of the Baf60c protein, there were dramatic cardiovascular defects. When we suppressed just half of the protein, the result was a defect that resembled one seen in infants," added Dr. Bruneau, also Canada Research Chair in Developmental Cardiology and member of U of T’s Heart & Stroke/Richard Lewar Centre of Excellence.

Using a novel way of reducing gene function called in vitro RNAi, the team developed mouse models with different levels of the protein. They were then able to see the effects of the suppressed protein using optical projection tomography at the Mouse Imaging Centre at Sick Kids. Knockout mice, where a specific gene is replaced, or removed, allow researchers to have precise control over a specific gene in order to study its function. "This new protein may provide new diagnostic tools and insights into how to treat cardiovascular problems," said Dr. Janet Rossant, the study’s co-principal investigator and a senior investigator at the Samuel Lunenfeld Research Institute at MSH, as well as a professor of Molecular and Medical Genetics at U of T. Congenital heart defects are among the most prevalent and serious conditions affecting children, occurring in approximately one out of 100 live births in Canada. The next steps for this research involve examining patients with congenital heart defects to see if they, like the mouse model, have this modified protein.

Other members of the research team include the study’s co-lead authors Dr. Heiko Lickert of the Samuel Lunenfeld Research Institute at MSH and Dr. Jun Takeuchi of the Sick Kids Research Institute, Dr. Ingo von Both, Dr. Jeffrey Wrana, Dr. Fionnuala McAuliffe and Dr. S. Lee Adamson, all from the Samuel Lunenfeld Research Institute at MSH, and Dr. Mark Henkelman and Dr. Johnathon Walls from Sick Kids.

This research was supported by the Canadian Institutes of Health Research, the Heart and Stroke Foundation of Ontario, the March of Dimes Birth Defects Foundation, the National Cancer Institute of Canada, the Canada Foundation for Innovation, the Ontario Innovation Trust, the Ontario Research and Development Challenge Fund, and Sick Kids Foundation.

Chelsea Gay | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>