Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team discovers possible genetic mechanism behind congenital heart defects

04.11.2004


Findings may lead to genetic tests



Researchers at The Hospital for Sick Children (Sick Kids) and Mount Sinai Hospital (MSH) have discovered a possible genetic mechanism behind congenital heart defects. This finding has implications for understanding how congenital heart defects occur, and may lead to genetic tests for certain defects, such as proteins that determine how genes are expressed. This also opens new insights into how general chromosome properties can relate to specific disease processes. This research is reported in the November 4, 2004 issue of the scientific journal Nature. "It was previously believed that all cells during development contained the same chromatin remodelling proteins that unwind DNA, a process that is important for genes to be turned on. However, we identified one of these proteins, called Baf60c, that is expressed specifically in the developing heart," said Dr. Benoit Bruneau, the study’s co-principal investigator, a Sick Kids scientist and an assistant professor of Molecular and Medical Genetics at the University of Toronto (U of T). "When we completely suppressed the function of the Baf60c protein, there were dramatic cardiovascular defects. When we suppressed just half of the protein, the result was a defect that resembled one seen in infants," added Dr. Bruneau, also Canada Research Chair in Developmental Cardiology and member of U of T’s Heart & Stroke/Richard Lewar Centre of Excellence.

Using a novel way of reducing gene function called in vitro RNAi, the team developed mouse models with different levels of the protein. They were then able to see the effects of the suppressed protein using optical projection tomography at the Mouse Imaging Centre at Sick Kids. Knockout mice, where a specific gene is replaced, or removed, allow researchers to have precise control over a specific gene in order to study its function. "This new protein may provide new diagnostic tools and insights into how to treat cardiovascular problems," said Dr. Janet Rossant, the study’s co-principal investigator and a senior investigator at the Samuel Lunenfeld Research Institute at MSH, as well as a professor of Molecular and Medical Genetics at U of T. Congenital heart defects are among the most prevalent and serious conditions affecting children, occurring in approximately one out of 100 live births in Canada. The next steps for this research involve examining patients with congenital heart defects to see if they, like the mouse model, have this modified protein.


Other members of the research team include the study’s co-lead authors Dr. Heiko Lickert of the Samuel Lunenfeld Research Institute at MSH and Dr. Jun Takeuchi of the Sick Kids Research Institute, Dr. Ingo von Both, Dr. Jeffrey Wrana, Dr. Fionnuala McAuliffe and Dr. S. Lee Adamson, all from the Samuel Lunenfeld Research Institute at MSH, and Dr. Mark Henkelman and Dr. Johnathon Walls from Sick Kids.

This research was supported by the Canadian Institutes of Health Research, the Heart and Stroke Foundation of Ontario, the March of Dimes Birth Defects Foundation, the National Cancer Institute of Canada, the Canada Foundation for Innovation, the Ontario Innovation Trust, the Ontario Research and Development Challenge Fund, and Sick Kids Foundation.

Chelsea Gay | EurekAlert!
Further information:
http://www.sickkids.ca
http://www.mtsinai.on.ca

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>