Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of new DNA enzyme family member found

04.11.2004


Cornell University researchers, who are trying to understand how proteins evolve and function by looking at their structural features, have uncovered the crystal structure of a protein involved in making the building blocks of DNA correctly.



The protein is AIRs kinase, and to the researchers’ surprise, its shape is similar to other members of the riboside kinase family, proteins that are important in making DNA and RNA, the molecules that make up genes. As a result, the research group now has nine members of the riboside kinase family that are thought to have evolved from a common protein ancestor. Writing in a recent issue of the journal Structure , Steven Ealick, professor of chemistry and chemical biology, and his graduate student Yan Zhang report that revealing the structure of AIRs kinase is another step in deciphering what proteins look like, a major goal of the National Institutes of Health, which funds the Ealick research group’s work.

"Often, two proteins with the same function have no sequence similarity," says Ealick, whose research group works with crystallized proteins, the building blocks of all living organisms, and has solved 50 protein structures over the past 20 years. "From knowing the genetic sequence alone, we wouldn’t necessarily guess that two proteins play a similar role in an organism."


Zhang took just two months of "trial and error" -- an unusually short time -- to get the AIRs kinase protein to crystallize. Then, using the Northeastern Collaborative Access Team (NE-CAT) beamline at the Advanced Photon Source at Argonne National Laboratory and the Cornell High Energy Synchrotron Source, two of only five sources of high-energy X-ray beams, she obtained the protein’s "optical transform," the intermediate stage between the crystal and the ultimate model of the structure.

Ealick explains, "Optical transform is what happens when you scatter light from a microscope onto a specimen, but until you have an objective lens that refocuses that light you can’t actually see an image." Structural protein chemists don’t have the equivalent of a microscope’s objective lens, so they "refocus" the image using computers.When the Ealick group compared the AIRs kinase protein to other known protein structures, they found that the shape was similar to other members of riboside kinase protein family. Ealick explains that even though the family members don’t have appreciable sequence similarity, they all contain three invariable amino acids. The similar shapes of the proteins position these three important pieces at the right place in the protein, and as a result, they all have a similar function -- the addition of a phosphate group to a DNA or RNA precursor.

"When we saw how very similar these proteins look, we began to ask whether there might be a common ancestor or whether proteins might evolve using similar kinds of rules that whole organisms use to evolve," Ealick reasons. In fact, his group is finding numerous examples of this.

Says Ealick, "I view this like the drawing you often see in textbooks on human evolution that first shows a primitive chimpanzee, and then you go through various morphological changes until you finally get to modern man. You can see the same sort of trends in the evolution of protein shapes."

The primitive protein began as a general kinase, playing lots of roles in the cell, he says. Eventually, it evolved and diverged into a group of different proteins, each of which could focus on a specialized task.

Ealick’s group now hopes to design a broad specificity riboside kinase as a laboratory tool for testing anticancer drugs and other pharmaceuticals. The group also is working to get the structure of other riboside kinase family members in order to be able to predict the proteins’ function.

David Brand | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>