Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Structure of new DNA enzyme family member found


Cornell University researchers, who are trying to understand how proteins evolve and function by looking at their structural features, have uncovered the crystal structure of a protein involved in making the building blocks of DNA correctly.

The protein is AIRs kinase, and to the researchers’ surprise, its shape is similar to other members of the riboside kinase family, proteins that are important in making DNA and RNA, the molecules that make up genes. As a result, the research group now has nine members of the riboside kinase family that are thought to have evolved from a common protein ancestor. Writing in a recent issue of the journal Structure , Steven Ealick, professor of chemistry and chemical biology, and his graduate student Yan Zhang report that revealing the structure of AIRs kinase is another step in deciphering what proteins look like, a major goal of the National Institutes of Health, which funds the Ealick research group’s work.

"Often, two proteins with the same function have no sequence similarity," says Ealick, whose research group works with crystallized proteins, the building blocks of all living organisms, and has solved 50 protein structures over the past 20 years. "From knowing the genetic sequence alone, we wouldn’t necessarily guess that two proteins play a similar role in an organism."

Zhang took just two months of "trial and error" -- an unusually short time -- to get the AIRs kinase protein to crystallize. Then, using the Northeastern Collaborative Access Team (NE-CAT) beamline at the Advanced Photon Source at Argonne National Laboratory and the Cornell High Energy Synchrotron Source, two of only five sources of high-energy X-ray beams, she obtained the protein’s "optical transform," the intermediate stage between the crystal and the ultimate model of the structure.

Ealick explains, "Optical transform is what happens when you scatter light from a microscope onto a specimen, but until you have an objective lens that refocuses that light you can’t actually see an image." Structural protein chemists don’t have the equivalent of a microscope’s objective lens, so they "refocus" the image using computers.When the Ealick group compared the AIRs kinase protein to other known protein structures, they found that the shape was similar to other members of riboside kinase protein family. Ealick explains that even though the family members don’t have appreciable sequence similarity, they all contain three invariable amino acids. The similar shapes of the proteins position these three important pieces at the right place in the protein, and as a result, they all have a similar function -- the addition of a phosphate group to a DNA or RNA precursor.

"When we saw how very similar these proteins look, we began to ask whether there might be a common ancestor or whether proteins might evolve using similar kinds of rules that whole organisms use to evolve," Ealick reasons. In fact, his group is finding numerous examples of this.

Says Ealick, "I view this like the drawing you often see in textbooks on human evolution that first shows a primitive chimpanzee, and then you go through various morphological changes until you finally get to modern man. You can see the same sort of trends in the evolution of protein shapes."

The primitive protein began as a general kinase, playing lots of roles in the cell, he says. Eventually, it evolved and diverged into a group of different proteins, each of which could focus on a specialized task.

Ealick’s group now hopes to design a broad specificity riboside kinase as a laboratory tool for testing anticancer drugs and other pharmaceuticals. The group also is working to get the structure of other riboside kinase family members in order to be able to predict the proteins’ function.

David Brand | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>