Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene linked to enlargement of the factory where proteins are processed

03.11.2004


St. Jude, Loyola and Kyoto University report that the system that controls the folding of newly made proteins also triggers the production of new membranes used to package and ship proteins



Part of a cellular mechanism that regulates the folding of new proteins into their proper shapes also includes a genetic response that enlarges the factory where both protein folding and packaging of proteins occurs. This finding, from researchers at St. Jude Children’s Research Hospital, Loyola University (Chicago) and Kyoto University (Kyoto, Japan), are published in the Oct. 15 issue of the Journal of Cell Biology. The link between protein folding and factory construction ensures that the two processes are coordinated when the cell is called upon to quickly make, fold and secrete large amounts of specific proteins.

The investigators discovered that the cell makes a molecule called XBP1 in response to an increased demand on the protein-folding machinery. This increased demand for folded proteins triggers the so-called unfolded protein response (UPR), as well as the expansion of the factory where proteins are folded and packaged so they can be secreted from the cell. The UPR also prompts the cell to make molecules called chaperones, which do the actual task of protein folding.


XBP1 triggers the cell to make phosphatidylcholine, the major building block of the rows of membranes that make up much of the factory, which is called the endoplasmic reticulum (ER). Membranes in the ER serve as envelopes to package the folded proteins. After leaving the ER, the envelope fuses with the inside face of the membrane that surrounds the cell itself. Once fused to the cell’s membrane, the envelope pops open, ejecting the protein out of the cell. "By linking chaperone production to the synthesis of phosphatidylcholine, XBP1 coordinates the processes of building and equipping new ER to increase the cell’s capacity for folding and shipping proteins," said Suzanne Jackowski, Ph.D., a member of St. Jude Infectious Diseases. Jackowski is an author of the Journal of Cell Biology report.

The study explains how the cells are able to rapidly meet the need for increased production of specific proteins by coordinating the tasks of folding and packaging them. The need for close coordination of protein processing and packaging is especially critical in the case of antibody production, according to Joseph W. Brewer, assistant professor in the department of Microbiology and Immunology at Loyola University Medical Center. The cells that make and secrete antibodies--the B cells--must synthesize, fold and release thousands of these proteins per minute, in response to an infection. Brewer is senior author of the paper.

The researchers made their findings in mouse cells called fibroblasts. They inserted the gene for XBP1 into a virus and used the genetically modified virus to transfer the gene into the fibroblasts. The XBP1 gene triggered an increase in the activity of key enzymes involved in membrane production. Because it is already known that UPR triggers activation of the XBP1 gene, findings of the current study suggest that XBP1 links the expansion of ER to the increased ability to fold and package newly made proteins for secretion.

Other authors of this paper are Rungtawan Sriburi (Loyola University) and Kazutoshi Mori (Kyoto University).

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>