Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutations in transporter protein effect HDL levels in the general population

02.11.2004


Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population

High cholesterol levels are a major contributor to heart disease in particular atherosclerosis. High density lipoprotein (HDL) has an essential role in reducing cholesterol levels, and therefore has a cardioprotective effect. There is therefore a great deal of research into the genetic underpinnings that control HDL blood levels. Individuals with Tangier disease have essentially no HDL in the blood. Recently the mutation underlying this disorder was identified in the ABC transporter A1 (ABCA1) gene, which is essential for the first step in the synthesis of HDL.

When both ABCA1genes become nonfunctional, Tangier disease develops. Given the ABCA1 transporter’s essential role in HDL synthesis, researchers have theorized that mutations in one of the ABCA1 genes may alter HDL levels in the normal population. Anne Tybjærg-Hansen and colleagues at Copenhagen University Hospital now provide the evidence that indeed alterations in the ABCA1 gene affect HDL levels in the general population. The authors found that approximately 10% of individual with low HDL levels in the general population have a mutation or nucleotide modification in one of their ABCA1 genes. Furthermore, the researchers showed that the 4 out of 9 individuals with low HDL specifically carry 1 of the 2 mutations identified in families with Tangier disease. These data provide insight into the genetic changes that can contribute to variation of HDL in the general population and add to our current understanding of the variety of mechanisms that together contribute to increased or decreased susceptibility to cardiovascular disease.


An accompanying commentary places this study in the context of the function of the ABCA1 transporter and its impact on HDL production along with studies of the genetics and molecular mechanisms relating to Tangier disease.

Laurie Goodman | EurekAlert!
Further information:
http://www.the-jci.org

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>