Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular clock genes influence metabolism of sugar and dietary fats

02.11.2004


Implications for better understanding of diabetes, metabolic syndrome, and obesity



Researchers at the University of Pennsylvania School of Medicine have discovered that components of the internal molecular clock of mammals have an important role in governing the metabolism of sugars and fats within the body. They found in mice that two of the well-studied proteins in the clock control the ability of animals to recover from the fall in blood sugar that occurs in response to insulin.

The investigators demonstrate a role for the circadian clock proteins, Bmal1 and Clock, in regulating the day-to-day levels of glucose in the blood. Suppressing the action of these molecules eliminates the diurnal variation in glucose and triglyceride levels. In addition, they found that a mutated Clock gene protected mice from diabetes induced by a high-fat diet. Together these findings represent the first molecular insight into how timing of what we eat – via the clock – can influence metabolism. The findings appear in the November 2 issue of the online journal PLoS Biology.


The master molecular clock in mammals is located in the brain in an area called the suprachiasmatic nucleus, clusters of neurons in the hypothalamus. Many of our basic functions, including regulating body temperature and hormone levels, vary throughout the day and night. Some of these changes may relate to being asleep or awake and on the job, but others are under the control of a biochemical timepiece that sets and resets daily.

Over the last several years, researchers have begun to appreciate that the molecular components of the clock exist in most, if not all, tissues of the body. Some years ago, a team led by senior author Garret FitzGerald, MD, Chairman of Penn’s Department of Pharmacology, discovered a molecular clock in the heart and blood vessels and described for the first time how the master clock in the brain could use a hormone to control such a peripheral clock.

During the course of the group’s research they found that many metabolic genes were among the roughly 10 percent of genes that oscillate in activity in a 24-hour period. "We noticed a variation in the recovery of blood glucose with clock time," says Dan Rudic, PhD, a Research Associate in the Department of Pharmacology and a lead author on the current study. "We were stunned when we found that inactivating clock genes abolished this response."

Food is also an important cue in directing the daily oscillations of metabolism and blood-sugar levels. As such, what you eat, as well as how much and when, all interact with this process. Normally, after eating, insulin notifies several organs to take up excess sugar in the blood and store it as glycogen. Conversely, when the sugar level in blood dips between snacks, glucagon notifies the body to break down stored energy like glycogen and fat to release as glucose. The molecular clock genes work somehow to orchestrate this complex system. However, when this finely tuned scenario is upset, all-too-familiar diseases arise: diabetes when there is too much sugar; hypoglycemia when there is too little.

What’s more, the researchers found that a high-fat diet amplified the oscillation in blood sugar over a 24-hour period and that disabling the Clock gene markedly reduced this effect. Indeed, a mutated Clock gene protected mice from diabetes induced by a high fat diet, a model of type-2 diabetes in humans. How this works is as yet unclear, but the researchers think that the clock mediates the impact of a fatty diet. "This suggests that altering when fat calories are eaten might be exploited to reduce the likelihood of inducing diabetes," says FitzGerald.

Poor dietary habits and a sedentary lifestyle have been linked to diabetes, high blood fats, and high blood pressure, all characterized in an epidemic called metabolic syndrome, which is reaching alarming proportions in both developed and developing countries, says FitzGerald. This work adds to the understanding of physiological control of metabolism and therefore possibilities of working with the body’s natural rhythms to fight disease.

Over time humans have moved from eating our fill at one sitting after the hunt to continuous availability of fast food. Nutritionists have long speculated that it might matter whether we "nibble" or "gorge" our calories, and that this makes a difference in how our bodies handle a high-fat diet. "These results suggest that it may not just be what we eat, but also, to some extent, when we eat it," concludes FitzGerald.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>