Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular clock genes influence metabolism of sugar and dietary fats

02.11.2004


Implications for better understanding of diabetes, metabolic syndrome, and obesity



Researchers at the University of Pennsylvania School of Medicine have discovered that components of the internal molecular clock of mammals have an important role in governing the metabolism of sugars and fats within the body. They found in mice that two of the well-studied proteins in the clock control the ability of animals to recover from the fall in blood sugar that occurs in response to insulin.

The investigators demonstrate a role for the circadian clock proteins, Bmal1 and Clock, in regulating the day-to-day levels of glucose in the blood. Suppressing the action of these molecules eliminates the diurnal variation in glucose and triglyceride levels. In addition, they found that a mutated Clock gene protected mice from diabetes induced by a high-fat diet. Together these findings represent the first molecular insight into how timing of what we eat – via the clock – can influence metabolism. The findings appear in the November 2 issue of the online journal PLoS Biology.


The master molecular clock in mammals is located in the brain in an area called the suprachiasmatic nucleus, clusters of neurons in the hypothalamus. Many of our basic functions, including regulating body temperature and hormone levels, vary throughout the day and night. Some of these changes may relate to being asleep or awake and on the job, but others are under the control of a biochemical timepiece that sets and resets daily.

Over the last several years, researchers have begun to appreciate that the molecular components of the clock exist in most, if not all, tissues of the body. Some years ago, a team led by senior author Garret FitzGerald, MD, Chairman of Penn’s Department of Pharmacology, discovered a molecular clock in the heart and blood vessels and described for the first time how the master clock in the brain could use a hormone to control such a peripheral clock.

During the course of the group’s research they found that many metabolic genes were among the roughly 10 percent of genes that oscillate in activity in a 24-hour period. "We noticed a variation in the recovery of blood glucose with clock time," says Dan Rudic, PhD, a Research Associate in the Department of Pharmacology and a lead author on the current study. "We were stunned when we found that inactivating clock genes abolished this response."

Food is also an important cue in directing the daily oscillations of metabolism and blood-sugar levels. As such, what you eat, as well as how much and when, all interact with this process. Normally, after eating, insulin notifies several organs to take up excess sugar in the blood and store it as glycogen. Conversely, when the sugar level in blood dips between snacks, glucagon notifies the body to break down stored energy like glycogen and fat to release as glucose. The molecular clock genes work somehow to orchestrate this complex system. However, when this finely tuned scenario is upset, all-too-familiar diseases arise: diabetes when there is too much sugar; hypoglycemia when there is too little.

What’s more, the researchers found that a high-fat diet amplified the oscillation in blood sugar over a 24-hour period and that disabling the Clock gene markedly reduced this effect. Indeed, a mutated Clock gene protected mice from diabetes induced by a high fat diet, a model of type-2 diabetes in humans. How this works is as yet unclear, but the researchers think that the clock mediates the impact of a fatty diet. "This suggests that altering when fat calories are eaten might be exploited to reduce the likelihood of inducing diabetes," says FitzGerald.

Poor dietary habits and a sedentary lifestyle have been linked to diabetes, high blood fats, and high blood pressure, all characterized in an epidemic called metabolic syndrome, which is reaching alarming proportions in both developed and developing countries, says FitzGerald. This work adds to the understanding of physiological control of metabolism and therefore possibilities of working with the body’s natural rhythms to fight disease.

Over time humans have moved from eating our fill at one sitting after the hunt to continuous availability of fast food. Nutritionists have long speculated that it might matter whether we "nibble" or "gorge" our calories, and that this makes a difference in how our bodies handle a high-fat diet. "These results suggest that it may not just be what we eat, but also, to some extent, when we eat it," concludes FitzGerald.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>