Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New quick test for drug-resistant strains of gonorrhea


Potential antimicrobial resistance in the bacteria that cause gonorrhea can be detected without culturing the organism, thanks to a rapid test developed by researchers at Johns Hopkins.

Key to the usefulness of the new test is that it does not require collection, culture or testing of the bacteria themselves - called Neisseria gonorrhea. Instead, the genes linked to resistance can be identified in urine samples or in leftover products from other commonly used diagnostic techniques, the Hopkins team reports.

This new application of probe technology should help public health officials study the spread of antibiotic-resistant gonorrhea by simplifying analysis of samples that cannot be used for culturing organisms, the Hopkins group added.

The Hopkins team developed the test by using an existing diagnostic technology called nucleic acid amplification tests (NAATs). These are FDA-approved tests that detect gonorrhea DNA in urine samples. Using leftover DNA from NAATs, the team performed a polymerase chain reaction (PCR) to make copies of genes linked to resistance. They then performed a melt curve analysis to detect mutations in these areas. In melt curve analysis, a short DNA sequence that matches the bacterial sequence in question is labeled with a fluorescent dye. The labeled sequence, called a probe, emits light only when bound to its target.

The probe and the DNA copies produced by PCR are dissolved together and the solution is slowly heated and cooled. This lets the probe bind to its target. Then the solution is slowly heated until the probe is melted from its target. A special instrument measures the temperature at which the probe melts from the DNA by identifying the temperature at which the probe ceases to emit light. The probe melts at a lower temperature if the target contains mutations and at a higher temperature if there are no mutations in that region of the gene. As a result, the lower melt temperature indicates potential resistance.

Rapid detection and characterization of gonococcal resistance determinants in NAAT samples. Julie Giles, Justin Hardick, Jeffrey Yuenger, Charlotte Gaydos, Jonathan Zenilman

David March | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>