Sick kids researchers unmask the potential of stem cells found in adult skin

Therapies for spinal cord injury may result


Researchers at The Hospital for Sick Children (Sick Kids) have shown that stem cells found in adult skin retain their embryonic capability of making many types of cells. This discovery affirms the potential that stem cells derived from this non-controversial source possess for the development of possible therapies for spinal cord injury and nervous system disorders. This research is reported in the November issue of the scientific journal Nature. “We think these stem cells are actually embryonic cells that go out into the skin during development and then stay in reservoirs in hair follicles,” said Dr. Freda Miller, the study’s principal investigator, a senior scientist in Development Biology in the Sick Kids Research Institute and a professor of Molecular and Medical Genetics, and Physiology at the University of Toronto.

“These stem cells are similar to a type of embryonic stem cell called a neural crest stem cell, and like neural crest stem cells, are endogenous and multipotent in nature. These neural crest stem cells generate the peripheral nervous system, and we are therefore now confident that we can make neural and other types of cells from the stem cells found in adult skin,” added Dr. Miller, also Canada Research Chair in Developmental Neurobiology.

The research team can now predict what type of cells can be made from these stem cells (called skin-derived precursors, or SKPs) based on the role played by neural-crest stem cells during embryogenesis. In addition to generating the peripheral nervous system, neural crest stem cells generate other tissues such as bone, cartilage, some types of muscle, and even part of the heart. This research was conducted in mice, with similar findings made recently by Dr. Miller’s group in the human cells.

“The cells that Dr. Miller’s group has found in the skin have huge potential to treat brain disorders because they are capable of transforming into neurons normally only found in the brain and other nervous tissue. This new research provides an explanation for the cells’ ability to make neurons and further enhances our understanding of a potentially valuable cell type for stem cell therapy,” said Dr. Ron Worton, scientific director of Canada’s Stem Cell Network. “The Stem Cell Network is pleased to have supported this work in Dr. Miller’s laboratory.”

The co-lead authors of the paper were Dr. Karl Fernandes, a postdoctoral fellow in Dr. Miller’s lab who holds a Canadian Institutes of Health Research/Canadian Neurotrauma Research Program fellowship, and Ian McKenzie, a graduate student in Dr. Miller’s lab from McGill University. Other members of the research team included Pleasantine Mill, Kristen Smith, Mahnaz Akhavan, Fanie Barnabé-Heider, Jeff Biernaskie, Nao Kobayashi, Jean Toma, Dr. David Kaplan and Dr. Chi-Chung Hui, all from Sick Kids, Dr. Victor Rafuse and Adrienne Junek from Dalhousie University, and Dr. Patricia Labosky from the University of Pennsylvania.

Media Contact

Laura Greer EurekAlert!

More Information:

http://www.utoronto.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors