Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sick kids researchers unmask the potential of stem cells found in adult skin

02.11.2004


Therapies for spinal cord injury may result



Researchers at The Hospital for Sick Children (Sick Kids) have shown that stem cells found in adult skin retain their embryonic capability of making many types of cells. This discovery affirms the potential that stem cells derived from this non-controversial source possess for the development of possible therapies for spinal cord injury and nervous system disorders. This research is reported in the November issue of the scientific journal Nature. "We think these stem cells are actually embryonic cells that go out into the skin during development and then stay in reservoirs in hair follicles," said Dr. Freda Miller, the study’s principal investigator, a senior scientist in Development Biology in the Sick Kids Research Institute and a professor of Molecular and Medical Genetics, and Physiology at the University of Toronto.

"These stem cells are similar to a type of embryonic stem cell called a neural crest stem cell, and like neural crest stem cells, are endogenous and multipotent in nature. These neural crest stem cells generate the peripheral nervous system, and we are therefore now confident that we can make neural and other types of cells from the stem cells found in adult skin," added Dr. Miller, also Canada Research Chair in Developmental Neurobiology.


The research team can now predict what type of cells can be made from these stem cells (called skin-derived precursors, or SKPs) based on the role played by neural-crest stem cells during embryogenesis. In addition to generating the peripheral nervous system, neural crest stem cells generate other tissues such as bone, cartilage, some types of muscle, and even part of the heart. This research was conducted in mice, with similar findings made recently by Dr. Miller’s group in the human cells.

"The cells that Dr. Miller’s group has found in the skin have huge potential to treat brain disorders because they are capable of transforming into neurons normally only found in the brain and other nervous tissue. This new research provides an explanation for the cells’ ability to make neurons and further enhances our understanding of a potentially valuable cell type for stem cell therapy," said Dr. Ron Worton, scientific director of Canada’s Stem Cell Network. "The Stem Cell Network is pleased to have supported this work in Dr. Miller’s laboratory."

The co-lead authors of the paper were Dr. Karl Fernandes, a postdoctoral fellow in Dr. Miller’s lab who holds a Canadian Institutes of Health Research/Canadian Neurotrauma Research Program fellowship, and Ian McKenzie, a graduate student in Dr. Miller’s lab from McGill University. Other members of the research team included Pleasantine Mill, Kristen Smith, Mahnaz Akhavan, Fanie Barnabé-Heider, Jeff Biernaskie, Nao Kobayashi, Jean Toma, Dr. David Kaplan and Dr. Chi-Chung Hui, all from Sick Kids, Dr. Victor Rafuse and Adrienne Junek from Dalhousie University, and Dr. Patricia Labosky from the University of Pennsylvania.

Laura Greer | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>