Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers shed light on cancer susceptibility using ’supermice’

02.11.2004


At any given time, there are many cells in our body that are in the process of dividing, yet they almost never go out of control to give rise to cancers. Cell proliferation is normally kept in check by a group of gatekeeper genes called "tumor suppressors". Of these, the Ink4a/ARF locus has been of considerable interest since this locus is inactivated in a majority of human cancers. This locus encodes two different proteins that act together to check uncontrolled tumor development.



A study to be published in the November 15 issue of Genes and Development illustrates the importance of these gene products in controlling cancer in mammals. The Tumor Suppressor group headed by Manuel Serrano at the Spanish National Cancer Center (CNIO) has used recombinant DNA technology to generate transgenic mice carrying an extra copy of the Ink4a/ARF tumor suppressor locus. The resulting "Super Ink4a/Arf" mice carry three copies of the Ink4a/Arf genes and were compared to their normal littermates that lacked the transgene and had only two copies.

These mice were put through a battery of tests and were found to be significantly resistant to a variety of tumorigenic stimuli. Cells derived from the super Ink4a/Arf mice were more resistant to acquiring the ability to divide indefinitely and alterations by oncogenes, two important features of a successful cancer. In addition, the animals developed cancers at a much lower rate upon treatment with different types of carcinogens. The presence of an extra copy of these genes and increased cancer resistance had no apparent effect on the lifespan or fertility of these "supermice". These results are consistent with earlier work done by


Serrano’s group who had showed similar results with yet another "supermouse", this one carrying an extra copy of another tumor suppressor gene, p53, which is also mutated or inactivated in a majority of human tumors. Serrano attributes this increased tumor resistance to the modest increase in the levels of gene products gained by having an extra copy of the genes stating "These quantitatively modest changes have nonetheless a significant impact on cancer incidence."

What impact does this study have on human health and disease? The results of this study imply that differences in gene expression levels of tumor suppressors may contribute significantly to the risk of developing cancers and may influence the way therapeutics are being developed. Serrano says "I fantasize about a hypothetical drug that moderately increases the activity of p53, p16Ink4a or ARF. This may translate in a big benefit regarding cancer susceptibility."

Heather Cosel Pieper | EurekAlert!
Further information:
http://www.cshl.org

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>