Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover enzyme crucial to HIV replication

01.11.2004


Scientists have discovered that a cellular enzyme helps ferry HIV genetic instructions out of the cell nucleus where they can then be translated into proteins to begin their most destructive work. The cellular enzyme represents a potential new target for developing improved HIV drugs, say the researchers from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and the McGill University AIDS Center.



Kuan-Teh Jeang, M.D., Ph.D., of NIAID led the research team reporting their discovery in the Oct. 29 issue of Cell. "This finding provides new insights into a crucial step in HIV replication," says Anthony S. Fauci, M.D., director of NIAID. "The discovery also provides an attractive target for drug development which, if successful, might in time give us a completely new type of HIV drug that circumvents the problem of drug resistance."

Dr. Jeang’s team found evidence that the virus co-opts an enzyme produced by human cells to transport HIV’s genetic material out of the cell nucleus. Once out of the nucleus, these messenger RNAs begin directing the cell to create and assemble new virus particles.


The process of how HIV genetic material--a long unedited strand of RNA--exits the cell nucleus has long puzzled scientists. Human cells cut, edit and splice RNA before it can leave the nucleus, but somehow HIV subverts that process and exports from the nucleus the long version of RNA that encodes instructions for making new viral particles.

Scientists knew that HIV makes a protein called Rev to help skirt the prohibition on transporting the lengthy, unedited version of RNA from the nucleus. They also knew that HIV commandeers a human protein known as CRM1 to aid in this process. Rev and CRM1 together, however, are insufficient to explain how HIV flouts the molecular machinery that cuts and splices RNA before it leaves the nucleus.

"Unspliced RNA is like an unwieldy ball of yarn," explains Dr. Jeang. "We found that the virus also uses a human enzyme known as DDX3 to straighten its RNA before threading it through a small pore in the nucleus." The team’s experiments offer the first evidence that HIV uses DDX3 in the complex process that moves its RNA out of the nucleus. They also demonstrated that DDX3, a human RNA helicase enzyme, is essential to this process. RNA helicases are enzymes that untwist RNA molecules.

The researchers now plan to look for inhibitors, small molecules that could either lock or gum up DDX3’s ability to straighten a twisted strand of RNA. Although it would take many years to develop, in the best scenario, an inhibitor for DDX3 could effectively block HIV replication. Researchers would need to find a balance between a potential inhibitor’s action in shutting down viral replication and any detriment it might cause to human cells.

In the past decade, two classes of HIV inhibitor drugs, protease inhibitors and reverse transcriptase inhibitors, have greatly extended the lives of HIV-positive individuals. While these drugs target HIV enzymes, a DDX3 inhibitor would target a cellular enzyme. The researchers see a great therapeutic advantage to blocking a cellular enzyme rather than a viral enzyme.

"Unlike viral enzymes, cellular enzymes can not mutate to escape from drugs," says Dr. Jeang. The problem of drug resistance that occurs with protease and reverse transcriptase inhibitors might thus be eliminated with a successful DDX3 inhibitor.

Linda Joy | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>