Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover enzyme crucial to HIV replication

01.11.2004


Scientists have discovered that a cellular enzyme helps ferry HIV genetic instructions out of the cell nucleus where they can then be translated into proteins to begin their most destructive work. The cellular enzyme represents a potential new target for developing improved HIV drugs, say the researchers from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and the McGill University AIDS Center.



Kuan-Teh Jeang, M.D., Ph.D., of NIAID led the research team reporting their discovery in the Oct. 29 issue of Cell. "This finding provides new insights into a crucial step in HIV replication," says Anthony S. Fauci, M.D., director of NIAID. "The discovery also provides an attractive target for drug development which, if successful, might in time give us a completely new type of HIV drug that circumvents the problem of drug resistance."

Dr. Jeang’s team found evidence that the virus co-opts an enzyme produced by human cells to transport HIV’s genetic material out of the cell nucleus. Once out of the nucleus, these messenger RNAs begin directing the cell to create and assemble new virus particles.


The process of how HIV genetic material--a long unedited strand of RNA--exits the cell nucleus has long puzzled scientists. Human cells cut, edit and splice RNA before it can leave the nucleus, but somehow HIV subverts that process and exports from the nucleus the long version of RNA that encodes instructions for making new viral particles.

Scientists knew that HIV makes a protein called Rev to help skirt the prohibition on transporting the lengthy, unedited version of RNA from the nucleus. They also knew that HIV commandeers a human protein known as CRM1 to aid in this process. Rev and CRM1 together, however, are insufficient to explain how HIV flouts the molecular machinery that cuts and splices RNA before it leaves the nucleus.

"Unspliced RNA is like an unwieldy ball of yarn," explains Dr. Jeang. "We found that the virus also uses a human enzyme known as DDX3 to straighten its RNA before threading it through a small pore in the nucleus." The team’s experiments offer the first evidence that HIV uses DDX3 in the complex process that moves its RNA out of the nucleus. They also demonstrated that DDX3, a human RNA helicase enzyme, is essential to this process. RNA helicases are enzymes that untwist RNA molecules.

The researchers now plan to look for inhibitors, small molecules that could either lock or gum up DDX3’s ability to straighten a twisted strand of RNA. Although it would take many years to develop, in the best scenario, an inhibitor for DDX3 could effectively block HIV replication. Researchers would need to find a balance between a potential inhibitor’s action in shutting down viral replication and any detriment it might cause to human cells.

In the past decade, two classes of HIV inhibitor drugs, protease inhibitors and reverse transcriptase inhibitors, have greatly extended the lives of HIV-positive individuals. While these drugs target HIV enzymes, a DDX3 inhibitor would target a cellular enzyme. The researchers see a great therapeutic advantage to blocking a cellular enzyme rather than a viral enzyme.

"Unlike viral enzymes, cellular enzymes can not mutate to escape from drugs," says Dr. Jeang. The problem of drug resistance that occurs with protease and reverse transcriptase inhibitors might thus be eliminated with a successful DDX3 inhibitor.

Linda Joy | EurekAlert!
Further information:
http://www.niaid.nih.gov

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>