Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover enzyme crucial to HIV replication

01.11.2004


Scientists have discovered that a cellular enzyme helps ferry HIV genetic instructions out of the cell nucleus where they can then be translated into proteins to begin their most destructive work. The cellular enzyme represents a potential new target for developing improved HIV drugs, say the researchers from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and the McGill University AIDS Center.



Kuan-Teh Jeang, M.D., Ph.D., of NIAID led the research team reporting their discovery in the Oct. 29 issue of Cell. "This finding provides new insights into a crucial step in HIV replication," says Anthony S. Fauci, M.D., director of NIAID. "The discovery also provides an attractive target for drug development which, if successful, might in time give us a completely new type of HIV drug that circumvents the problem of drug resistance."

Dr. Jeang’s team found evidence that the virus co-opts an enzyme produced by human cells to transport HIV’s genetic material out of the cell nucleus. Once out of the nucleus, these messenger RNAs begin directing the cell to create and assemble new virus particles.


The process of how HIV genetic material--a long unedited strand of RNA--exits the cell nucleus has long puzzled scientists. Human cells cut, edit and splice RNA before it can leave the nucleus, but somehow HIV subverts that process and exports from the nucleus the long version of RNA that encodes instructions for making new viral particles.

Scientists knew that HIV makes a protein called Rev to help skirt the prohibition on transporting the lengthy, unedited version of RNA from the nucleus. They also knew that HIV commandeers a human protein known as CRM1 to aid in this process. Rev and CRM1 together, however, are insufficient to explain how HIV flouts the molecular machinery that cuts and splices RNA before it leaves the nucleus.

"Unspliced RNA is like an unwieldy ball of yarn," explains Dr. Jeang. "We found that the virus also uses a human enzyme known as DDX3 to straighten its RNA before threading it through a small pore in the nucleus." The team’s experiments offer the first evidence that HIV uses DDX3 in the complex process that moves its RNA out of the nucleus. They also demonstrated that DDX3, a human RNA helicase enzyme, is essential to this process. RNA helicases are enzymes that untwist RNA molecules.

The researchers now plan to look for inhibitors, small molecules that could either lock or gum up DDX3’s ability to straighten a twisted strand of RNA. Although it would take many years to develop, in the best scenario, an inhibitor for DDX3 could effectively block HIV replication. Researchers would need to find a balance between a potential inhibitor’s action in shutting down viral replication and any detriment it might cause to human cells.

In the past decade, two classes of HIV inhibitor drugs, protease inhibitors and reverse transcriptase inhibitors, have greatly extended the lives of HIV-positive individuals. While these drugs target HIV enzymes, a DDX3 inhibitor would target a cellular enzyme. The researchers see a great therapeutic advantage to blocking a cellular enzyme rather than a viral enzyme.

"Unlike viral enzymes, cellular enzymes can not mutate to escape from drugs," says Dr. Jeang. The problem of drug resistance that occurs with protease and reverse transcriptase inhibitors might thus be eliminated with a successful DDX3 inhibitor.

Linda Joy | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht How cells hack their own genes
24.08.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>