Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Actin muscles in on DNA transcription

01.11.2004


Overturning a scientific stereotype, researchers at the University of Illinois at Chicago have discovered a new role for a key protein involved in muscle contraction and shown it is present not just in the cytoplasm of cells but in the nucleus as well.



Actin has been pigeonholed as a molecular motor, explains Primal de Lanerolle, professor of physiology and biophysics at UIC. "Whenever cells move or divide, actin is involved, like its partner myosin." "But in the nucleus," de Lanerolle said, "actin acts instead like a binding protein. It recruits other proteins in the very complicated process our bodies use to transcribe DNA segments into messages made of RNA." These messages travel out to the cytoplasm, where they serve as templates for building proteins, including actin itself. "If actin is blocked, transcription can’t begin," de Lanerolle said.

The finding is published in the current issue of Nature Cell Biology and follows an earlier discovery by de Lanerolle and his colleagues that actin’s cohort, myosin, the other compound involved in muscle contraction, is also present in the nucleus.


Transcription occurs in the nucleus in enzyme factories composed of up to 100 proteins -- huge complexes through which lengthy segments of DNA move as each nucleotide is read off to create an RNA strand. The factories are partly rebuilt each time a gene needs to be transcribed. "If the factory were the size of Grand Central Station, then the DNA would stretch from New York to San Francisco, back to New York again, and on to Kansas City," said de Lanerolle.

Part of the factory is a group of proteins that, once assembled, jump-starts transcription. While scientists know a great deal about this pre-initiation complex, as it is called, they still have much to learn about its components and the sequence in which those components are assembled.

As de Lanerolle and his co-workers discovered, actin is one of the proteins in this complex. Its job is to recruit RNA polymerase II, the enzyme that will later detach itself from the complex and proceed on down the DNA string, stitching together the RNA message. "We were looking for a motor, but we found something completely different," de Lanerolle said. He suspects that actin does act as a motor once RNA polymerase II begins transcription, but that has yet to be proved.

"Learning about the precise components and sequence of events in DNA transcription is important because the process is essential to all cellular activity, whether in normal healthy tissues or in diseases like cancer," de Lanerolle said. "The knowledge we gain will one day open up opportunities for intervening when genetic transcription goes awry."

Other authors of the study are Wilma Hofmann, Ljuba Stojiljkovic, Beata Fuchsova, Gabriela Vargas, Evangelos Mavrommatis and Thomas Hope, from UIC; Vlada Philimonenko, Katarina Kysela, and Pavel Hozak from the Institute of Experimental Medicine in the Czech Republic; James Goodrich, from the University of Colorado; and James Lessard, from the Children’s Hospital Research Foundation in Cincinnati, Ohio.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>