Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify key mechanism in estrogen’s role in preventing bone loss

29.10.2004


Scientists have uncovered a significant new link in the chain of immune system events through which estrogen prevents bone loss and that contribute to bone loss when estrogen is deficient. Through research in mice, the scientists discovered that an immune signaling molecule called type b transforming growth factor (TGFb) is responsible for a cascade of events that leads estrogen to prevent bone loss. When TGFb signaling in T cells is blocked, the bone-sparing effects of estrogen are lost. The findings could lead to new therapeutic approaches for preventing bone loss. Results of the research were published online in the Proceedings of the National Academy of Sciences the week of October 25.



The study’s senior author was Roberto Pacifici, MD, Herndon professor of medicine and director of the Division of Endocrinology at Emory University School of Medicine. Lead author was Emory research associate Yuhao Gao, PhD.

Previous research has shown that bone loss due to estrogen deficiency is caused by the overexpansion of immune T cells. T cells are known to produce a protein called tumor necrosis factor (TNF), which increases the formation of osteoclasts in rodents and humans. Osteoclasts are cells that help cause the absorption and removal of bone.


In research published in PNAS in August 2003, Dr. Pacifici and his colleagues demonstrated that estrogen deficiency leads to the expression of the immune regulatory protein interferon gamma (IFN-g), which in turn stimulates a protein called class II transactivator (CIITA). They found that increased expression of CIITA leads to expanded antigen presentation by macrophages (immune cells that alert T cells to the presence of invading organisms) and in turn to enhanced T cell activation in the bone marrow and extended T-cell lifespan.

The investigators’ new research traces another step in the "upstream" pathway leading to estrogen’s effect on bone. In order to model postmenopausal estrogen deficiency, they removed the ovaries from mice, then studied the effects of estrogen on immune cells and on bone marrow in culture. They measured the level of TGFb in bone marrow macrophages (BMM) and discovered that the level of TGFb in the BMM of mice lacking ovaries was about half that of mice with ovaries. When they treated the mice with estrogen, levels of TGFb in the bone marrow increased about three-fold in mice with ovaries and about eight-fold in mice without ovaries.

In order to test the effects of TGFb on bone-marrow density, the scientists used a transgenic mouse model in which TBFb signaling in T cells is blocked. Although these mice had the same level of bone density as control mice at birth, they gradually lost bone density over time, suggesting that when T cells are insensitive to TGFb signaling, they stimulate the loss of bone.

"Our research shows that mice with T-cell specific blockade of TGFb signaling are completely insensitive to the bone-sparing effects of estrogen," says Dr. Pacifici. "This results from a failure of estrogen to repress the production of IFN-g, which in turn leads to increased T cell activation and TNF production. We also found in mice that a lack of estrogen production blunts the levels of TGFb in the bone marrow and that overexpression of TGFb in vivo prevents bone loss caused by removal of the ovaries. This critical mechanism in the estrogen-bone loss pathway, should it be confirmed in humans, could lead us to inhibition of T-cell activation or simulation of TGFB signaling as new therapeutic approaches for preventing bone loss."

Other authors included Wei-Ping Qian, Kimberly Dark, Gianluca Toraldo, and M. Neale Weitzmann from Emory School of Medicine; Angela S.P. Lin and Robert E. Guldberg from the Georgia Institute of Technology; and Richard A. Flavell from Yale University School of Medicine. The research was supported by grants from the National Institutes of Health.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>