Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify key mechanism in estrogen’s role in preventing bone loss

29.10.2004


Scientists have uncovered a significant new link in the chain of immune system events through which estrogen prevents bone loss and that contribute to bone loss when estrogen is deficient. Through research in mice, the scientists discovered that an immune signaling molecule called type b transforming growth factor (TGFb) is responsible for a cascade of events that leads estrogen to prevent bone loss. When TGFb signaling in T cells is blocked, the bone-sparing effects of estrogen are lost. The findings could lead to new therapeutic approaches for preventing bone loss. Results of the research were published online in the Proceedings of the National Academy of Sciences the week of October 25.



The study’s senior author was Roberto Pacifici, MD, Herndon professor of medicine and director of the Division of Endocrinology at Emory University School of Medicine. Lead author was Emory research associate Yuhao Gao, PhD.

Previous research has shown that bone loss due to estrogen deficiency is caused by the overexpansion of immune T cells. T cells are known to produce a protein called tumor necrosis factor (TNF), which increases the formation of osteoclasts in rodents and humans. Osteoclasts are cells that help cause the absorption and removal of bone.


In research published in PNAS in August 2003, Dr. Pacifici and his colleagues demonstrated that estrogen deficiency leads to the expression of the immune regulatory protein interferon gamma (IFN-g), which in turn stimulates a protein called class II transactivator (CIITA). They found that increased expression of CIITA leads to expanded antigen presentation by macrophages (immune cells that alert T cells to the presence of invading organisms) and in turn to enhanced T cell activation in the bone marrow and extended T-cell lifespan.

The investigators’ new research traces another step in the "upstream" pathway leading to estrogen’s effect on bone. In order to model postmenopausal estrogen deficiency, they removed the ovaries from mice, then studied the effects of estrogen on immune cells and on bone marrow in culture. They measured the level of TGFb in bone marrow macrophages (BMM) and discovered that the level of TGFb in the BMM of mice lacking ovaries was about half that of mice with ovaries. When they treated the mice with estrogen, levels of TGFb in the bone marrow increased about three-fold in mice with ovaries and about eight-fold in mice without ovaries.

In order to test the effects of TGFb on bone-marrow density, the scientists used a transgenic mouse model in which TBFb signaling in T cells is blocked. Although these mice had the same level of bone density as control mice at birth, they gradually lost bone density over time, suggesting that when T cells are insensitive to TGFb signaling, they stimulate the loss of bone.

"Our research shows that mice with T-cell specific blockade of TGFb signaling are completely insensitive to the bone-sparing effects of estrogen," says Dr. Pacifici. "This results from a failure of estrogen to repress the production of IFN-g, which in turn leads to increased T cell activation and TNF production. We also found in mice that a lack of estrogen production blunts the levels of TGFb in the bone marrow and that overexpression of TGFb in vivo prevents bone loss caused by removal of the ovaries. This critical mechanism in the estrogen-bone loss pathway, should it be confirmed in humans, could lead us to inhibition of T-cell activation or simulation of TGFB signaling as new therapeutic approaches for preventing bone loss."

Other authors included Wei-Ping Qian, Kimberly Dark, Gianluca Toraldo, and M. Neale Weitzmann from Emory School of Medicine; Angela S.P. Lin and Robert E. Guldberg from the Georgia Institute of Technology; and Richard A. Flavell from Yale University School of Medicine. The research was supported by grants from the National Institutes of Health.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>