Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetic damage to eyes, heart, nerves, kidneys may be explained by controversial theory

29.10.2004


A controversial theory about how diabetes causes extensive tissue damage will appear in the November issue of Diabetes. At stake in the heated debate over the theory are researchers’ efforts to find new ways to reduce loss of vision, kidney failure, heart damage and other side effects of diabetes.



The American Diabetes Association estimates that 18.2 million Americans have diabetes. Diabetes’ links to heart attack and stroke make it the sixth leading cause of death, and it is the leading cause of new cases of blindness among adults 20-74 years old. Diabetic nerve damage is a major contributor to non-traumatic lower limb amputations, and diabetic kidney damage creates 43 percent of all cases of end-stage renal disease.

Proponents of the theory argue that the primary cause of such tissue damage is a key compound in energy production other scientists long ago rejected as a contributor to diabetic side effects. The researchers address the many objections and questions raised by critics of their hypothesis in a 47-page appendix available online in conjunction with their study. "The metabolic imbalances caused by diabetes are quite complex, and that has made it very difficult to gain acceptance or even consideration of our hypothesis," says senior investigator Joseph Williamson, M.D, a retired pathology faculty member at Washington University School of Medicine in St. Louis. "Being able to publish the online appendix finally gave us the room we needed to respond to everyone’s concerns."


Williamson’s theory focuses on the energy-producing compound’s reversible transformation between two forms, nicotinamide adenine dinucleotide (NAD) and NADH (NAD plus H, or one atom of hydrogen). Cells transform NAD into NADH when they transfer electrons and protons from the sugar glucose to NAD during an energy-making process called glycolysis.

This process doesn’t require oxygen, but it needs NAD to get started. Cells therefore make it a top priority to keep high amounts of NAD available. "The ratio of NAD to NADH varies in different types of tissues, ranging from 500 to 1 to 2,000 to 1," Williamson notes. "In diabetics, though, that ratio can drop as low as 200 to 1."

In diabetic patients, blood sugar levels are elevated, a condition known as hyperglycemia; in addition, tissues damaged by diabetes often have low levels of oxygen, or hypoxia. Williamson and his coauthors used in vitro studies of rat retinas to show that both of these conditions decrease the ratio of NAD to NADH in different ways. Hyperglycemia does it by increasing the rate of transformation of NAD to NADH. Hypoxia makes it difficult for cells to turn NADH back to NAD.

In both conditions the increased NADH is recycled back to NAD by processes that produce free radicals, chemically reactive compounds that can damage tissue. Williamson and his coauthors propose that long-term use of these processes causes the damage seen in diabetes. "The consequences of these different disruptions to NADH recycling are additive--they have the potential to produce much more damage than you might expect if you looked at either one independently," Williamson explains.

Scientists have known for some time that diabetes increases transformation of NAD to NADH by boosting cells’ consumption of glucose through a process known as the sorbitol pathway. Like glycolysis, the sorbitol pathway transforms NAD to NADH, but only at a small fraction of the level of glycolysis. This previously led scientists to conclude that the sorbitol pathway was highly unlikely to create enough NADH to trigger the recycling processes that create free radicals.

Williamson counters that glycolysis makes pyruvate as well as NADH, and pyruvate transforms NADH back to NAD. The sorbitol pathway doesn’t make pyruvate, so the NADH it makes has to be recycled by other processes that create free radicals. "If you make a normal animal hyperglycemic by infusing glucose into it for five hours or so, you’ll see some of the same changes in the blood vessels that you see very early on in diabetics," Williamson notes. "However, we showed that if you infuse pyruvate at the same time you infuse the glucose, you completely block those changes."

Pyruvate also protects tissues from much of the damage normally caused by hypoxia, which leads to many of the same changes in blood vessels and other tissues caused by diabetes. "We’ve still got quite a bit of convincing to do, but I think people are starting to recognize that this seems to be a major mechanism for producing the free radicals that play such an important role in diabetic complications," Williamson says. "Hopefully this will someday lead to more success in efforts to ease those complications."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>