Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tufts Veterinary School scientists decode Cryptosporidium genome

29.10.2004


’Nature’ article describes sequence of eight chromosomes



A team of scientists at Tufts University School of Veterinary Medicine has helped decode the genome sequence of Cryptosporidium hominis, an insidious parasite identified as one of the most common causes of waterborne diseases in humans and classified by the Centers for Disease Control and Prevention as a potential bioterrorist agent. The researchers’ findings are reported in today’s issue of the journal Nature. Cryptosporidium hominis is a highly contagious parasite that lives in the intestines of infected humans. Since there are no effective treatments, it is a relentless public health concern.

"Sequencing the genome of Cryptosporidium will help us determine the underlying mechanisms of the organism’s unusual resistance to antimicrobial agents, and enable us to develop preventive vaccines and/or pharmaceutical treatments," said Saul Tzipori, PhD, director of Tufts’ Division of Infectious Diseases and a member of the multi-institutional team researching the genome.


Present in drinking and recreational water throughout the world, Cryptosporidium causes watery diarrhea that can lead to dehydration, weight loss, stomach cramps, fever, nausea, and vomiting. While healthy people usually overcome illnesses caused by the organism, it can be life threatening to malnourished children and people whose immune systems have been compromised because of cancer, AIDS, etc.

The Cryptosporidium pathogen, which can be found in the feces of both humans and animals, is difficult to work with, thereby impeding the efforts of investigators to conduct laboratory investigations and develop appropriate therapies. Tufts researchers successfully isolated and propagated Cryptosporidium hominis in 2000, making Tufts the first research institution capable of propagating this pathogen.

In 2000, Tufts applied to the National Institutes of Health (NIH) for funding to enable a consortium of researchers at Tufts, Virginia Commonwealth University and the University of Minnesota to simultaneously sequence the genomes of two Cryptosporidium pathogens infectious to humans - Cryptosporidium hominis and Cryptosporidium parvum.

Today’s article in the journal Nature describes the consortium’s successful decoding of Cryptosporidium hominis – one of the two pathogens found in humans. In addition to producing DNA from the Cryptosporidium hominis isolate TU502, Tufts scientists constructed a bacterial artificial chromosome library for this research project. "This library is important for building a scaffold of the genome, on which the smaller sequence assemblies are aligned," said Giovanni Widmer, PhD, associate professor in Tufts’ Department of Biomedical Sciences and a lead author of this study.

In April 2004, the consortium announced in the journal Science that it had successfully sequenced the eight chromosomes found in the genome Cryptosporidium parvum, the pathogen found in ruminants and humans.

"What is unique about this project is that the genomes of two related human and veterinary pathogens were sequenced in parallel," Widmer said. "This now puts us in a position to not only identify potential drug and vaccine targets, but also unravel key biological characteristics that might help explain the difference between the pathogen that infects humans only and C. parvum, which is transmitted between humans and animals."

Barbara Donato | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>