Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tufts Veterinary School scientists decode Cryptosporidium genome

29.10.2004


’Nature’ article describes sequence of eight chromosomes



A team of scientists at Tufts University School of Veterinary Medicine has helped decode the genome sequence of Cryptosporidium hominis, an insidious parasite identified as one of the most common causes of waterborne diseases in humans and classified by the Centers for Disease Control and Prevention as a potential bioterrorist agent. The researchers’ findings are reported in today’s issue of the journal Nature. Cryptosporidium hominis is a highly contagious parasite that lives in the intestines of infected humans. Since there are no effective treatments, it is a relentless public health concern.

"Sequencing the genome of Cryptosporidium will help us determine the underlying mechanisms of the organism’s unusual resistance to antimicrobial agents, and enable us to develop preventive vaccines and/or pharmaceutical treatments," said Saul Tzipori, PhD, director of Tufts’ Division of Infectious Diseases and a member of the multi-institutional team researching the genome.


Present in drinking and recreational water throughout the world, Cryptosporidium causes watery diarrhea that can lead to dehydration, weight loss, stomach cramps, fever, nausea, and vomiting. While healthy people usually overcome illnesses caused by the organism, it can be life threatening to malnourished children and people whose immune systems have been compromised because of cancer, AIDS, etc.

The Cryptosporidium pathogen, which can be found in the feces of both humans and animals, is difficult to work with, thereby impeding the efforts of investigators to conduct laboratory investigations and develop appropriate therapies. Tufts researchers successfully isolated and propagated Cryptosporidium hominis in 2000, making Tufts the first research institution capable of propagating this pathogen.

In 2000, Tufts applied to the National Institutes of Health (NIH) for funding to enable a consortium of researchers at Tufts, Virginia Commonwealth University and the University of Minnesota to simultaneously sequence the genomes of two Cryptosporidium pathogens infectious to humans - Cryptosporidium hominis and Cryptosporidium parvum.

Today’s article in the journal Nature describes the consortium’s successful decoding of Cryptosporidium hominis – one of the two pathogens found in humans. In addition to producing DNA from the Cryptosporidium hominis isolate TU502, Tufts scientists constructed a bacterial artificial chromosome library for this research project. "This library is important for building a scaffold of the genome, on which the smaller sequence assemblies are aligned," said Giovanni Widmer, PhD, associate professor in Tufts’ Department of Biomedical Sciences and a lead author of this study.

In April 2004, the consortium announced in the journal Science that it had successfully sequenced the eight chromosomes found in the genome Cryptosporidium parvum, the pathogen found in ruminants and humans.

"What is unique about this project is that the genomes of two related human and veterinary pathogens were sequenced in parallel," Widmer said. "This now puts us in a position to not only identify potential drug and vaccine targets, but also unravel key biological characteristics that might help explain the difference between the pathogen that infects humans only and C. parvum, which is transmitted between humans and animals."

Barbara Donato | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>