Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the zebra fish leading us to new therapies?

28.10.2004


A little over a year ago, the Flanders Interuniversity Institute for Biotechnology (VIB), the D. Collen Research Foundation, and the Catholic University of Leuven invested in the acquisition of a new technology provided by the zebra fish. This small aquarium fish can be used to aid the study of the function of human genes. That this investment is reaping returns is evident from the study that VIB researchers at the Catholic University of Leuven are publishing today in the renowned journal Nature. They have shown for the first time that new blood vessels do not grow in random directions, but that they are guided by specific signal molecules. This is a major step in the development of new targeted forms of therapeutic angiogenesis.



A complex network

Blood vessels transport blood throughout our body. They form a kind of network to bring the necessary nutritional and building materials to organs and tissues and to carry off waste products. So, it is difficult to overstate the importance of blood vessels to a well-functioning body. Disorders in which the blood supply is impaired are quite serious: deficient blood supply to the heart, for example, leads to heart attack. Medical science hopes to be able to treat such diseases in the future by stimulating the growth of new blood vessels, a form of therapy called therapeutic angiogenesis.


Despite ever-growing knowledge about blood vessel formation (angiogenesis), scientists still know little about how the new blood vessels choose their path to reach a particular organ or tissue. Discovering these mechanisms would greatly aid development of new strategies for therapeutic angiogenesis. Not only must the growth of new blood vessels be stimulated, but the blood vessels must also be oriented specifically within an organized and coordinated network.

Daring hypothesis

Our nerve-tissue is also constructed as a very well-organized and coordinated network. It is known that, during their growth, nerves orient themselves very specifically toward a target organ or tissue. Then, by means of attraction and repulsion signals, so-called signal molecules guide the nerve cells to their target. In their search for the mechanisms behind the targeted growth of blood vessels, Monica Autiero and her co-researchers under the direction of Peter Carmeliet (VIB, Catholic University of Leuven) asked themselves whether blood vessels might perhaps use the same signals as nerve cells.

To answer this question, the researchers called on the small, translucid zebra fish. The great advantages of using zebra fish instead of mice are that zebra fish grow and multiply very rapidly and - because you can see through them - scientists can study the development of their blood vessels under the microscope.

Blood vessel guides

In collaboration with American and French scientists, the Flemish research team corroborated the bold hypothesis. Focusing their research on UNC5B, a signal molecule receptor for nerve cells, the researchers demonstrated that zebra fish that are unable to produce UNC5B construct a blood vessel network with uncontrolled branches and divergent patterns. This indicates that the receptor and the signal molecule are of crucial importance in guiding new blood vessels.

Scientists can now predict with great certainty that nerves and blood vessels use the same ’guides’ along their routes to their targets. A finding that is very important for the development of new, targeted forms of therapeutic angiogenesis.

Ann Van Gysel | EurekAlert!
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>