Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the zebra fish leading us to new therapies?

28.10.2004


A little over a year ago, the Flanders Interuniversity Institute for Biotechnology (VIB), the D. Collen Research Foundation, and the Catholic University of Leuven invested in the acquisition of a new technology provided by the zebra fish. This small aquarium fish can be used to aid the study of the function of human genes. That this investment is reaping returns is evident from the study that VIB researchers at the Catholic University of Leuven are publishing today in the renowned journal Nature. They have shown for the first time that new blood vessels do not grow in random directions, but that they are guided by specific signal molecules. This is a major step in the development of new targeted forms of therapeutic angiogenesis.



A complex network

Blood vessels transport blood throughout our body. They form a kind of network to bring the necessary nutritional and building materials to organs and tissues and to carry off waste products. So, it is difficult to overstate the importance of blood vessels to a well-functioning body. Disorders in which the blood supply is impaired are quite serious: deficient blood supply to the heart, for example, leads to heart attack. Medical science hopes to be able to treat such diseases in the future by stimulating the growth of new blood vessels, a form of therapy called therapeutic angiogenesis.


Despite ever-growing knowledge about blood vessel formation (angiogenesis), scientists still know little about how the new blood vessels choose their path to reach a particular organ or tissue. Discovering these mechanisms would greatly aid development of new strategies for therapeutic angiogenesis. Not only must the growth of new blood vessels be stimulated, but the blood vessels must also be oriented specifically within an organized and coordinated network.

Daring hypothesis

Our nerve-tissue is also constructed as a very well-organized and coordinated network. It is known that, during their growth, nerves orient themselves very specifically toward a target organ or tissue. Then, by means of attraction and repulsion signals, so-called signal molecules guide the nerve cells to their target. In their search for the mechanisms behind the targeted growth of blood vessels, Monica Autiero and her co-researchers under the direction of Peter Carmeliet (VIB, Catholic University of Leuven) asked themselves whether blood vessels might perhaps use the same signals as nerve cells.

To answer this question, the researchers called on the small, translucid zebra fish. The great advantages of using zebra fish instead of mice are that zebra fish grow and multiply very rapidly and - because you can see through them - scientists can study the development of their blood vessels under the microscope.

Blood vessel guides

In collaboration with American and French scientists, the Flemish research team corroborated the bold hypothesis. Focusing their research on UNC5B, a signal molecule receptor for nerve cells, the researchers demonstrated that zebra fish that are unable to produce UNC5B construct a blood vessel network with uncontrolled branches and divergent patterns. This indicates that the receptor and the signal molecule are of crucial importance in guiding new blood vessels.

Scientists can now predict with great certainty that nerves and blood vessels use the same ’guides’ along their routes to their targets. A finding that is very important for the development of new, targeted forms of therapeutic angiogenesis.

Ann Van Gysel | EurekAlert!
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>