Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the zebra fish leading us to new therapies?

28.10.2004


A little over a year ago, the Flanders Interuniversity Institute for Biotechnology (VIB), the D. Collen Research Foundation, and the Catholic University of Leuven invested in the acquisition of a new technology provided by the zebra fish. This small aquarium fish can be used to aid the study of the function of human genes. That this investment is reaping returns is evident from the study that VIB researchers at the Catholic University of Leuven are publishing today in the renowned journal Nature. They have shown for the first time that new blood vessels do not grow in random directions, but that they are guided by specific signal molecules. This is a major step in the development of new targeted forms of therapeutic angiogenesis.



A complex network

Blood vessels transport blood throughout our body. They form a kind of network to bring the necessary nutritional and building materials to organs and tissues and to carry off waste products. So, it is difficult to overstate the importance of blood vessels to a well-functioning body. Disorders in which the blood supply is impaired are quite serious: deficient blood supply to the heart, for example, leads to heart attack. Medical science hopes to be able to treat such diseases in the future by stimulating the growth of new blood vessels, a form of therapy called therapeutic angiogenesis.


Despite ever-growing knowledge about blood vessel formation (angiogenesis), scientists still know little about how the new blood vessels choose their path to reach a particular organ or tissue. Discovering these mechanisms would greatly aid development of new strategies for therapeutic angiogenesis. Not only must the growth of new blood vessels be stimulated, but the blood vessels must also be oriented specifically within an organized and coordinated network.

Daring hypothesis

Our nerve-tissue is also constructed as a very well-organized and coordinated network. It is known that, during their growth, nerves orient themselves very specifically toward a target organ or tissue. Then, by means of attraction and repulsion signals, so-called signal molecules guide the nerve cells to their target. In their search for the mechanisms behind the targeted growth of blood vessels, Monica Autiero and her co-researchers under the direction of Peter Carmeliet (VIB, Catholic University of Leuven) asked themselves whether blood vessels might perhaps use the same signals as nerve cells.

To answer this question, the researchers called on the small, translucid zebra fish. The great advantages of using zebra fish instead of mice are that zebra fish grow and multiply very rapidly and - because you can see through them - scientists can study the development of their blood vessels under the microscope.

Blood vessel guides

In collaboration with American and French scientists, the Flemish research team corroborated the bold hypothesis. Focusing their research on UNC5B, a signal molecule receptor for nerve cells, the researchers demonstrated that zebra fish that are unable to produce UNC5B construct a blood vessel network with uncontrolled branches and divergent patterns. This indicates that the receptor and the signal molecule are of crucial importance in guiding new blood vessels.

Scientists can now predict with great certainty that nerves and blood vessels use the same ’guides’ along their routes to their targets. A finding that is very important for the development of new, targeted forms of therapeutic angiogenesis.

Ann Van Gysel | EurekAlert!
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>