Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the zebra fish leading us to new therapies?

28.10.2004


A little over a year ago, the Flanders Interuniversity Institute for Biotechnology (VIB), the D. Collen Research Foundation, and the Catholic University of Leuven invested in the acquisition of a new technology provided by the zebra fish. This small aquarium fish can be used to aid the study of the function of human genes. That this investment is reaping returns is evident from the study that VIB researchers at the Catholic University of Leuven are publishing today in the renowned journal Nature. They have shown for the first time that new blood vessels do not grow in random directions, but that they are guided by specific signal molecules. This is a major step in the development of new targeted forms of therapeutic angiogenesis.



A complex network

Blood vessels transport blood throughout our body. They form a kind of network to bring the necessary nutritional and building materials to organs and tissues and to carry off waste products. So, it is difficult to overstate the importance of blood vessels to a well-functioning body. Disorders in which the blood supply is impaired are quite serious: deficient blood supply to the heart, for example, leads to heart attack. Medical science hopes to be able to treat such diseases in the future by stimulating the growth of new blood vessels, a form of therapy called therapeutic angiogenesis.


Despite ever-growing knowledge about blood vessel formation (angiogenesis), scientists still know little about how the new blood vessels choose their path to reach a particular organ or tissue. Discovering these mechanisms would greatly aid development of new strategies for therapeutic angiogenesis. Not only must the growth of new blood vessels be stimulated, but the blood vessels must also be oriented specifically within an organized and coordinated network.

Daring hypothesis

Our nerve-tissue is also constructed as a very well-organized and coordinated network. It is known that, during their growth, nerves orient themselves very specifically toward a target organ or tissue. Then, by means of attraction and repulsion signals, so-called signal molecules guide the nerve cells to their target. In their search for the mechanisms behind the targeted growth of blood vessels, Monica Autiero and her co-researchers under the direction of Peter Carmeliet (VIB, Catholic University of Leuven) asked themselves whether blood vessels might perhaps use the same signals as nerve cells.

To answer this question, the researchers called on the small, translucid zebra fish. The great advantages of using zebra fish instead of mice are that zebra fish grow and multiply very rapidly and - because you can see through them - scientists can study the development of their blood vessels under the microscope.

Blood vessel guides

In collaboration with American and French scientists, the Flemish research team corroborated the bold hypothesis. Focusing their research on UNC5B, a signal molecule receptor for nerve cells, the researchers demonstrated that zebra fish that are unable to produce UNC5B construct a blood vessel network with uncontrolled branches and divergent patterns. This indicates that the receptor and the signal molecule are of crucial importance in guiding new blood vessels.

Scientists can now predict with great certainty that nerves and blood vessels use the same ’guides’ along their routes to their targets. A finding that is very important for the development of new, targeted forms of therapeutic angiogenesis.

Ann Van Gysel | EurekAlert!
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>