Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stimulating nerve cells with laser precision

27.10.2004


Researchers devise optical method to safely, effectively stimulate neurons



Biomedical engineers and physicians at Vanderbilt University have brought the day when artificial limbs will be controlled directly by the brain considerably closer by discovering a method that uses laser light, rather than electricity, to stimulate and control nerve cells.

The researchers have discovered that low-intensity infrared laser light can spark specific nerves to life, exciting a leg or even individual toes without actually touching the nerve cells. “This technique brings nerve stimulation out of the Dark Ages,” said Vanderbilt Assistant Professor of Biomedical Engineering and Neurological Surgery Anita Mahadevan-Jansen. “Much work is going on around the world trying to make electric nerve stimulation better, but the technique is inherently limited. Using lasers instead, we can simultaneously excite and record the responses of nerve fibers with much greater precision, accuracy and effectiveness.”


The method was developed by Mahadevan-Jansen; her husband Duco Jansen, associate professor of biomedical engineering and neurological surgery; Dr. Peter Konrad and Dr. Chris Kao of Vanderbilt Neurological Surgery, both assistant professors of neurological surgery; and biomedical engineering doctoral student Jonathon Wells.

In an experiment with rats, the scientists used a laser to stimulate the sciatic nerve and to control muscles in the animal’s hind leg and individual toes, demonstrating accuracy beyond the limitations of electrical stimulation. Immediately following the experiment, the rats regained full use of their legs with no signs of weakness or damage.

Konrad, who is also director of the Vanderbilt Functional Neurosurgery program, points out that neurostimulation is ideally done cell by cell. “The problem with the conventional electrical method is that we have a large zone around our target neuron that also is affected simply because of the way electricity travels throughout the tissue. Using light to stimulate neurons, we can pick off a single neuron without affecting the other neurons around it.”

In a matter of months, Kao says, a machine could be created that helps guide neurosurgeons to the target nerves during rhizotomy, a procedure that frees someone from a spastic or seemingly frozen muscle, as when someone’s head is stuck in a tortuous position. Currently, once the proper neural region is selected, surgeons pinpoint the individual nerves by a process of elimination, striking nerves with an electric probe while the patient is awake to ensure that the right nerve has been located.

But electrical probes create a halo of electrical activity in surrounding neurons, creating a "blind spot" and other inaccurate data in the recording and analysis of the procedure, making it tedious and difficult to locate the exact nerve. Optics, on the other hand, can deliver laser precision by stimulating only the nerve cell of interest.

The idea of optical stimulation started as the scientists questioned whether they could accurately detect the movement through the brain of an electrical impulse from a nerve cell. Konrad suggested using light to trace the activity, and Mahadevan-Jansen thought of using laser light to stimulate nerves and to actually generate this activity.

Vanderbilt’s W.M. Keck Foundation Free Electron Laser Center was the perfect facility to give it a try. The Department of Defense-funded FEL, one of only a handful in the world and the only one equipped to perform medical experimental research, was used to see if the idea worked and to determine the optimal settings for the laser.

Now that the research team has shown that the process works and that it is safe, they are turning their attention to studying the exact mechanisms behind the stimulation effects. The most likely candidates, Jansen and Wells say, include a photothermal or mechanical effect or perhaps a combination of the two.

The scientists are beginning experiments in the central nervous system.

Mahadevan-Jansen said the technique, which is pending patent approval, is not the only novel aspect of this work. "This research results from the marriage of biomedical engineering, optical science and neurological research," Mahadevan-Jansen said. "Some programs are working on optics, and some are working on neurological stimulation, but nobody has put them together."

Imagining future applications, Konrad said he can envision an array of fiber optic threads that runs directly from the brain or spinal cord to a prosthetic arm or leg, creating the ultimate man-machine interface.

Vivian Cooper-Capps | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>