Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stimulating nerve cells with laser precision

27.10.2004


Researchers devise optical method to safely, effectively stimulate neurons



Biomedical engineers and physicians at Vanderbilt University have brought the day when artificial limbs will be controlled directly by the brain considerably closer by discovering a method that uses laser light, rather than electricity, to stimulate and control nerve cells.

The researchers have discovered that low-intensity infrared laser light can spark specific nerves to life, exciting a leg or even individual toes without actually touching the nerve cells. “This technique brings nerve stimulation out of the Dark Ages,” said Vanderbilt Assistant Professor of Biomedical Engineering and Neurological Surgery Anita Mahadevan-Jansen. “Much work is going on around the world trying to make electric nerve stimulation better, but the technique is inherently limited. Using lasers instead, we can simultaneously excite and record the responses of nerve fibers with much greater precision, accuracy and effectiveness.”


The method was developed by Mahadevan-Jansen; her husband Duco Jansen, associate professor of biomedical engineering and neurological surgery; Dr. Peter Konrad and Dr. Chris Kao of Vanderbilt Neurological Surgery, both assistant professors of neurological surgery; and biomedical engineering doctoral student Jonathon Wells.

In an experiment with rats, the scientists used a laser to stimulate the sciatic nerve and to control muscles in the animal’s hind leg and individual toes, demonstrating accuracy beyond the limitations of electrical stimulation. Immediately following the experiment, the rats regained full use of their legs with no signs of weakness or damage.

Konrad, who is also director of the Vanderbilt Functional Neurosurgery program, points out that neurostimulation is ideally done cell by cell. “The problem with the conventional electrical method is that we have a large zone around our target neuron that also is affected simply because of the way electricity travels throughout the tissue. Using light to stimulate neurons, we can pick off a single neuron without affecting the other neurons around it.”

In a matter of months, Kao says, a machine could be created that helps guide neurosurgeons to the target nerves during rhizotomy, a procedure that frees someone from a spastic or seemingly frozen muscle, as when someone’s head is stuck in a tortuous position. Currently, once the proper neural region is selected, surgeons pinpoint the individual nerves by a process of elimination, striking nerves with an electric probe while the patient is awake to ensure that the right nerve has been located.

But electrical probes create a halo of electrical activity in surrounding neurons, creating a "blind spot" and other inaccurate data in the recording and analysis of the procedure, making it tedious and difficult to locate the exact nerve. Optics, on the other hand, can deliver laser precision by stimulating only the nerve cell of interest.

The idea of optical stimulation started as the scientists questioned whether they could accurately detect the movement through the brain of an electrical impulse from a nerve cell. Konrad suggested using light to trace the activity, and Mahadevan-Jansen thought of using laser light to stimulate nerves and to actually generate this activity.

Vanderbilt’s W.M. Keck Foundation Free Electron Laser Center was the perfect facility to give it a try. The Department of Defense-funded FEL, one of only a handful in the world and the only one equipped to perform medical experimental research, was used to see if the idea worked and to determine the optimal settings for the laser.

Now that the research team has shown that the process works and that it is safe, they are turning their attention to studying the exact mechanisms behind the stimulation effects. The most likely candidates, Jansen and Wells say, include a photothermal or mechanical effect or perhaps a combination of the two.

The scientists are beginning experiments in the central nervous system.

Mahadevan-Jansen said the technique, which is pending patent approval, is not the only novel aspect of this work. "This research results from the marriage of biomedical engineering, optical science and neurological research," Mahadevan-Jansen said. "Some programs are working on optics, and some are working on neurological stimulation, but nobody has put them together."

Imagining future applications, Konrad said he can envision an array of fiber optic threads that runs directly from the brain or spinal cord to a prosthetic arm or leg, creating the ultimate man-machine interface.

Vivian Cooper-Capps | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>