Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic double-agents unmasked

26.10.2004


Babraham Institute and Cancer Research UK scientists have discovered that certain enzymes with a key activity in the immune system may be important in stem-cell development, but may also work against us by contributing to the occurrence of cancer.

The usual targets

A family of enzymes known as DNA deaminases beneficially mutates the genetic code of antibodies to improve their ability to recognise foreign bodies. The usual target for the enzymes’ activity is cytosine (C), one of the four building blocks of DNA, however this research has shown that the enzymes can also target another DNA component: methylcytosine (cytosine carrying a methyl chemical group).



Double-agents

The discovery may help to explain how methylcytosine is removed from DNA in naturally-occurring situations, such as stem-cell development, but it also suggests a possible mechanism for the mutations that occur in up to one third of hereditary diseases and many cancers. Hence DNA deaminases may be acting as ‘double-agents’.

Dr Wolf Reik, Head of Developmental Genetics and Imprinting at the Babraham Institute, explains: “The removal of methyl groups from DNA is a sought-after activity implicated in the ability of stem-cells to develop into any other cell in the body, but it is uncertain how this demethylation could occur. The activity we have found in DNA deaminases provides a potential explanation of the mechanism. However, incorrect repair of the DNA during this process may result in mutations that could increase a person’s chance of developing cancer.”

Interpreting the code

Methylcytosine is an example of an ‘epigenetic’ mark – a heritable modification of DNA that affects the way in which a gene is read, without changing the DNA code itself. Epigenetics is an important area of research because epigenetic marks are essential for normal development and they can become misdirected in the cell, leading to cancer and other human diseases.

The discovery of the actions of these enzymes, described in a paper published in the Journal of Biological Chemistry, was made by Dr Hugh Morgan and colleagues, working with Dr Wolf Reik at the Babraham Institute, and in collaboration with Dr Svend Peterson-Mahrt at Cancer Research UK.

Emma Southern | alfa
Further information:
http://www.babraham.ac.uk

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>