Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic double-agents unmasked

26.10.2004


Babraham Institute and Cancer Research UK scientists have discovered that certain enzymes with a key activity in the immune system may be important in stem-cell development, but may also work against us by contributing to the occurrence of cancer.

The usual targets

A family of enzymes known as DNA deaminases beneficially mutates the genetic code of antibodies to improve their ability to recognise foreign bodies. The usual target for the enzymes’ activity is cytosine (C), one of the four building blocks of DNA, however this research has shown that the enzymes can also target another DNA component: methylcytosine (cytosine carrying a methyl chemical group).



Double-agents

The discovery may help to explain how methylcytosine is removed from DNA in naturally-occurring situations, such as stem-cell development, but it also suggests a possible mechanism for the mutations that occur in up to one third of hereditary diseases and many cancers. Hence DNA deaminases may be acting as ‘double-agents’.

Dr Wolf Reik, Head of Developmental Genetics and Imprinting at the Babraham Institute, explains: “The removal of methyl groups from DNA is a sought-after activity implicated in the ability of stem-cells to develop into any other cell in the body, but it is uncertain how this demethylation could occur. The activity we have found in DNA deaminases provides a potential explanation of the mechanism. However, incorrect repair of the DNA during this process may result in mutations that could increase a person’s chance of developing cancer.”

Interpreting the code

Methylcytosine is an example of an ‘epigenetic’ mark – a heritable modification of DNA that affects the way in which a gene is read, without changing the DNA code itself. Epigenetics is an important area of research because epigenetic marks are essential for normal development and they can become misdirected in the cell, leading to cancer and other human diseases.

The discovery of the actions of these enzymes, described in a paper published in the Journal of Biological Chemistry, was made by Dr Hugh Morgan and colleagues, working with Dr Wolf Reik at the Babraham Institute, and in collaboration with Dr Svend Peterson-Mahrt at Cancer Research UK.

Emma Southern | alfa
Further information:
http://www.babraham.ac.uk

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>