Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists find new way to convert adult human stem cells to dopamine neurons

26.10.2004


Researchers at Jefferson Medical College have found a new way to coax bone marrow stem cells into becoming dopamine-producing neurons. If the method proves reliable, the work may ultimately lead to new therapies for neurological diseases such as Parkinson’s disease, which is marked by a loss of dopamine-making cells in the brain.



Developmental biologist Lorraine Iacovitti, Ph.D., associate director of the Farber Institute for Neurosciences at Thomas Jefferson University in Philadelphia and her co-workers had previously shown that by using a potion of growth factors and other nutrients in the laboratory, they were able to convert adult human bone marrow stem cells into adult brain cells. Human adult bone marrow stem cells – also known as pluripotent stem cells – normally give rise to human bone, muscle, cartilage and fat cells.

While nearly all cells looked like neurons with axonal processes, they invariably reverted back to their original undifferentiated state in two to three days. Dr. Iacovitti and her co-workers instead attempted to grow the cells in a different way. Rather than an attached monolayer of skin-like cells, they grew the bone marrow cells in suspension as neurospheres – groups of cells early in development – akin to the way neural stem cells are grown.


They found that the newly differentiated cells didn’t merely look like dopamine neurons, but expressed traits of neurons and related cells called astrocytes and oligodendrocytes – cells derived from neural stem cells. What’s more, the neurons produced tyrosine hydroxylase, an enzyme needed to make dopamine. She reports her team’s findings October 25, 2004 at the annual meeting of the Society for Neuroscience in San Diego.

The Jefferson scientists also found a second enzyme involved in dopamine production, and an important molecule called the dopamine transporter. Interestingly, Dr. Iacovitti notes, some of the cellular markers that would be expected to be expressed by new bone marrow cells were present in bone marrow stem cells grown in the original monolayers, though they were fewer in number. "The markers don’t disappear," explains Dr. Iacovitti, who is also professor of neurology at Jefferson Medical College of Thomas Jefferson University. "The cells seem to have markers of both bone marrow cells and dopamine neurons all the time. They don’t forsake what they normally would be."

While she can’t say for sure whether or not the stem cells grown with the new method have markers of both bone marrow stem cells and dopamine neurons, the new dopamine neurons did not revert back to stem cells. "There are limitations to differentiating adult stem cells the way we want them – to get them to permanently give up being what they were meant to be and become neurons," she says. "Maybe this is a way to grow these stem cells to get them to truly become dopamine neurons instead of just looking like neurons. "If we can now appropriately direct the differentiation of bone marrow stem cells, these cells could provide an abundant source of adult human neurons for use in the treatment of neurodegenerative diseases," she says.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>