Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists find new way to convert adult human stem cells to dopamine neurons

26.10.2004


Researchers at Jefferson Medical College have found a new way to coax bone marrow stem cells into becoming dopamine-producing neurons. If the method proves reliable, the work may ultimately lead to new therapies for neurological diseases such as Parkinson’s disease, which is marked by a loss of dopamine-making cells in the brain.



Developmental biologist Lorraine Iacovitti, Ph.D., associate director of the Farber Institute for Neurosciences at Thomas Jefferson University in Philadelphia and her co-workers had previously shown that by using a potion of growth factors and other nutrients in the laboratory, they were able to convert adult human bone marrow stem cells into adult brain cells. Human adult bone marrow stem cells – also known as pluripotent stem cells – normally give rise to human bone, muscle, cartilage and fat cells.

While nearly all cells looked like neurons with axonal processes, they invariably reverted back to their original undifferentiated state in two to three days. Dr. Iacovitti and her co-workers instead attempted to grow the cells in a different way. Rather than an attached monolayer of skin-like cells, they grew the bone marrow cells in suspension as neurospheres – groups of cells early in development – akin to the way neural stem cells are grown.


They found that the newly differentiated cells didn’t merely look like dopamine neurons, but expressed traits of neurons and related cells called astrocytes and oligodendrocytes – cells derived from neural stem cells. What’s more, the neurons produced tyrosine hydroxylase, an enzyme needed to make dopamine. She reports her team’s findings October 25, 2004 at the annual meeting of the Society for Neuroscience in San Diego.

The Jefferson scientists also found a second enzyme involved in dopamine production, and an important molecule called the dopamine transporter. Interestingly, Dr. Iacovitti notes, some of the cellular markers that would be expected to be expressed by new bone marrow cells were present in bone marrow stem cells grown in the original monolayers, though they were fewer in number. "The markers don’t disappear," explains Dr. Iacovitti, who is also professor of neurology at Jefferson Medical College of Thomas Jefferson University. "The cells seem to have markers of both bone marrow cells and dopamine neurons all the time. They don’t forsake what they normally would be."

While she can’t say for sure whether or not the stem cells grown with the new method have markers of both bone marrow stem cells and dopamine neurons, the new dopamine neurons did not revert back to stem cells. "There are limitations to differentiating adult stem cells the way we want them – to get them to permanently give up being what they were meant to be and become neurons," she says. "Maybe this is a way to grow these stem cells to get them to truly become dopamine neurons instead of just looking like neurons. "If we can now appropriately direct the differentiation of bone marrow stem cells, these cells could provide an abundant source of adult human neurons for use in the treatment of neurodegenerative diseases," she says.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Biomarkers for identifying Tumor Aggressiveness
26.07.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>