Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists find new way to convert adult human stem cells to dopamine neurons

26.10.2004


Researchers at Jefferson Medical College have found a new way to coax bone marrow stem cells into becoming dopamine-producing neurons. If the method proves reliable, the work may ultimately lead to new therapies for neurological diseases such as Parkinson’s disease, which is marked by a loss of dopamine-making cells in the brain.



Developmental biologist Lorraine Iacovitti, Ph.D., associate director of the Farber Institute for Neurosciences at Thomas Jefferson University in Philadelphia and her co-workers had previously shown that by using a potion of growth factors and other nutrients in the laboratory, they were able to convert adult human bone marrow stem cells into adult brain cells. Human adult bone marrow stem cells – also known as pluripotent stem cells – normally give rise to human bone, muscle, cartilage and fat cells.

While nearly all cells looked like neurons with axonal processes, they invariably reverted back to their original undifferentiated state in two to three days. Dr. Iacovitti and her co-workers instead attempted to grow the cells in a different way. Rather than an attached monolayer of skin-like cells, they grew the bone marrow cells in suspension as neurospheres – groups of cells early in development – akin to the way neural stem cells are grown.


They found that the newly differentiated cells didn’t merely look like dopamine neurons, but expressed traits of neurons and related cells called astrocytes and oligodendrocytes – cells derived from neural stem cells. What’s more, the neurons produced tyrosine hydroxylase, an enzyme needed to make dopamine. She reports her team’s findings October 25, 2004 at the annual meeting of the Society for Neuroscience in San Diego.

The Jefferson scientists also found a second enzyme involved in dopamine production, and an important molecule called the dopamine transporter. Interestingly, Dr. Iacovitti notes, some of the cellular markers that would be expected to be expressed by new bone marrow cells were present in bone marrow stem cells grown in the original monolayers, though they were fewer in number. "The markers don’t disappear," explains Dr. Iacovitti, who is also professor of neurology at Jefferson Medical College of Thomas Jefferson University. "The cells seem to have markers of both bone marrow cells and dopamine neurons all the time. They don’t forsake what they normally would be."

While she can’t say for sure whether or not the stem cells grown with the new method have markers of both bone marrow stem cells and dopamine neurons, the new dopamine neurons did not revert back to stem cells. "There are limitations to differentiating adult stem cells the way we want them – to get them to permanently give up being what they were meant to be and become neurons," she says. "Maybe this is a way to grow these stem cells to get them to truly become dopamine neurons instead of just looking like neurons. "If we can now appropriately direct the differentiation of bone marrow stem cells, these cells could provide an abundant source of adult human neurons for use in the treatment of neurodegenerative diseases," she says.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>