Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Retinal stem cells can regenerate after transplant

26.10.2004


U of T researchers work with human retinal cells



University of Toronto researchers have shown that human retinal stem cells transplanted into the eyes of mice and chicks can successfully regenerate. The research, published in the Oct. 19 issue of The Proceedings of the National Academy of Sciences, documents the development of transplanted human retinal stem cells into light-sensing photoreceptor cells and retinal pigment epithelial (RPE) cells, the cells which bounce light and images back onto the retina.

"We transplanted the cells early in the animals’ development when all the nutrients and signals they needed for differentiation were still there," says lead author Brenda Coles, a U of T laboratory technician working under the supervision of Professor Derek van der Kooy in the Department of Medical Genetics and Microbiology. "When their eyes fully developed, the human cells survived, migrated into the sensory part of the eye and formed the correct cells."


The research has implications for future treatment of degenerative eye diseases such as retinitis pigmentosa and macular degeneration but that’s still a long way off, says Coles. She, van der Kooy and their colleagues are now exploring whether retinal stem cells from healthy mice continue to develop into photoreceptor cells and RPE cells when transplanted to mice with diseased eyes. "We’re starting with mice to see if they can overcome the genetics involved in disease," says Coles. "The eye itself is telling the stem cells what to do, so when we go to a disease model, it is important to know what those signals from the eye are so we can inhibit them or protect the cells."

The other researchers involved in this study are U of T’s Prof. Roderick McInnes, and post-doctoral fellow Tomoyuki Inoue, Department of Medical Genetics and Microbiology; Brigitte Angenieux and Yvan Arsenijevic, Hopital Ophtalmique Jules Gonin, Lausanne, Switzerland; and Katia Del Rio-Tsonis, Miami University, Ohio.

Brenda Coles | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>