Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Retinal stem cells can regenerate after transplant

26.10.2004


U of T researchers work with human retinal cells



University of Toronto researchers have shown that human retinal stem cells transplanted into the eyes of mice and chicks can successfully regenerate. The research, published in the Oct. 19 issue of The Proceedings of the National Academy of Sciences, documents the development of transplanted human retinal stem cells into light-sensing photoreceptor cells and retinal pigment epithelial (RPE) cells, the cells which bounce light and images back onto the retina.

"We transplanted the cells early in the animals’ development when all the nutrients and signals they needed for differentiation were still there," says lead author Brenda Coles, a U of T laboratory technician working under the supervision of Professor Derek van der Kooy in the Department of Medical Genetics and Microbiology. "When their eyes fully developed, the human cells survived, migrated into the sensory part of the eye and formed the correct cells."


The research has implications for future treatment of degenerative eye diseases such as retinitis pigmentosa and macular degeneration but that’s still a long way off, says Coles. She, van der Kooy and their colleagues are now exploring whether retinal stem cells from healthy mice continue to develop into photoreceptor cells and RPE cells when transplanted to mice with diseased eyes. "We’re starting with mice to see if they can overcome the genetics involved in disease," says Coles. "The eye itself is telling the stem cells what to do, so when we go to a disease model, it is important to know what those signals from the eye are so we can inhibit them or protect the cells."

The other researchers involved in this study are U of T’s Prof. Roderick McInnes, and post-doctoral fellow Tomoyuki Inoue, Department of Medical Genetics and Microbiology; Brigitte Angenieux and Yvan Arsenijevic, Hopital Ophtalmique Jules Gonin, Lausanne, Switzerland; and Katia Del Rio-Tsonis, Miami University, Ohio.

Brenda Coles | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>