Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandbagging cancer in the bloodstream

26.10.2004


Scientists at Scripps Research Institute use drug to stabilize blood vessels and block metastatic cancer cells from leaving the bloodstream

A team of scientists at The Scripps Research Institute has identified a potential treatment strategy against metastatic cancer cells that has never been tried before. Metastasis is a major problem with cancer because it allows tumor cells to spread to other parts of the body (See Supporting Material: Cancer and Metastasis). While solid tumors can be removed surgically or treated with chemotherapy or radiation, metastatic cells that have already entered the circulation are capable of opening a passageway through blood vessels in order to spread to various organs throughout the body.

Once tumor cells leave their primary tumor, they enter the blood stream and ultimately must find an exit strategy in order to set up new "satellite" lesions in one or more distant organs. The potential treatment strategy targets this final step of the metastatic cascade--the exit of the metastatic cells from the bloodstream. "We know that the normal blood vessel wall is one final barrier that metastatic tumor cells must overcome, which allows them to find their way out of the bloodstream and into a metastatic site," says Immunology Professor David A. Cheresh, who led the research with postdoctoral fellow Sara Weis at The Scripps Research Institute. To exit the blood stream, says Cheresh, the tumor cells stimulate the local blood vessels to briefly open their cell-cell junctions so that they can implant themselves into a new organ site.



In the latest issue of the Journal of Cell Biology, Cheresh, Weis, and their colleagues report the dramatic effect of using a class of compounds known as Src kinase inhibitors to treat metastatic cancer in mice. Rather than conventional chemotherapies, which target the tumor cells, Cheresh and colleagues suggest a new approach that would increase the protective barrier strength of the host blood vessels and prevent tumor cells from exiting the bloodstream. To support their approach, Cheresh, Weis, and their colleagues demonstrate that mice that are genetically deficient in the Src gene are resistant to tumor cell metastasis. Furthermore, blocking Src in normal mice dramatically protects the mice against metastatic tumors because it keeps the cancer cells "sandbagged" in the bloodstream where they are vulnerable to attack and clearance from the immune system. "You can imagine that a prolonged treatment [with Src kinase inhibitors] may actually help people ward off some of the most deadly and metastatic cancers," says Cheresh. "Currently, anti-cancer drugs are typically aimed at the tumor cells themselves. The problem is that genetically unstable tumor cells are able to develop resistance to one or more drugs, ultimately overwhelming the host. We keep changing the combination, and the cells keep picking the lock. With this new approach, we are essentially bolting the door closed."

Sandbagging Cancer Cells

The possible new treatment strategy for cancer cell metastasis stems from several years of basic research conducted by Cheresh and his collaborators into an area of biology known as cell adhesion. Cell adhesion is a topic of major importance because it is the basis for how groups of cells form and define functionally distinct tissues and organs in the body. Blood vessels are lined by what are known as endothelial cells, which adhere to one another and line the body’s blood vessels like bricks lining a subterranean tunnel.

Cheresh and other basic science researchers over the past decades have identified a number of the adhesion molecules that hold these endothelial cells together. They have also identified the signaling mechanisms that defeat cell adhesion and induce endothelial cells to let go of one another during events like angiogenesis--the growth of new blood vessels that often accompanies tumor growth.

Some of the most metastatic tumor cells secrete a protein known as vascular endothelial growth factor (VEGF). VEGF stimulates a protein called Src kinase, which causes proteins known as cadherins to disengage from each other. Normally, cadherins are something like the mortar in between the endothelial cell bricks, and they maintain the integrity of blood vessel walls. When tumor cells release VEGF within blood vessels, Src kinases respond to this by causing the vascular cell cadherins to break apart and allow the tumor cell to get out of the circulation and into an environment where the tumor cell can survive and propagate.

Blocking the Exits

Targeting growth factors like VEGF or its downstream target Src is an emerging paradigm for fighting cancer. In fact, the U.S. Food and Drug Administration recently approved Avastin, a VEGF inhibitor, for fighting colorectal cancer. However, VEGF is unique among growth factors in that it also causes vascular permeability where it is released. This is easily seen when looking at the blood supply to tumors under the microscope, says Cheresh. "Anywhere there is VEGF, there is a vascular permeability," he says. "Tumors have blood vessels that are very leaky."

Once in the circulation, tumor cells can travel to distant parts of the body. Often tumor cells that are in the bloodstream get lodged in small blood vessels. Up until now it has not been clear how the tumor cells actually get out of these vessels and form new tumors in distant organs, says Cheresh, but part of the answer may lie in the fact that these cells release VEGF when they are in the bloodstream, and the VEGF allows them to enter into the tissue.

Cheresh, Weis, and their colleagues thought that if they could prevent this by blocking VEGF or Src kinase--in essence, sandbagging the tumor cells in the bloodstream--this might have a positive therapeutic effect on patients with metastatic cancer, because the human immune system handles tumor cells very well if they are in the circulation. "Tumor cells don’t last in the circulation," explains Cheresh. "If you can increase the dwell time that tumor cells spend in circulation by reducing their capacity to get out, you effectively give the immune system a greater chance of winning the battle."

Cheresh, Weis, and their colleagues decided to test whether blocking VEGF-induced vascular permeability with something known as a Src kinase inhibitor might turn off metastatic tumor cells’ exit strategy from the bloodstream. They examined the question by turning to a special type of mouse that Cheresh and his colleagues have used in their laboratory. These mice, born without the ability to make Src kinase protein, show no vascular leak response.

In laboratory studies, these animals showed a high degree of resistance to tumor metastasis. Separate experiments showed that normal mice treated with Src kinase inhibitors also acquired a high degree of resistance to the metastasis of tumor cells. This suggests a possible new avenue to explore therapeutically in humans. Src kinase inhibitors might reduce the metastatic ability of cancer cells and improve the prognosis of patients treated with them.

Significantly, this approach reduces cancer cell metastasis by targeting a host protein (Src kinase), which means that it may be broadly applicable in many different types of cancer. Indeed, Cheresh and Weis tested Src kinase inhibitors against several types of metastatic cancer cell lines and found that it did work against most of them.

Of course, such a treatment strategy would have to be explored in the context of clinical trials before doctors knew for sure if it would work in humans, and these may take several years.

Jason Bardi | EurekAlert!
Further information:
http://www.scripps.edu
http://www.jcb.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>