Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clues to the puzzle of ’talking’ root cells

26.10.2004


Biologists studying the development of plant roots, a general basic model for tissue development, are uncovering new pieces of the puzzle of how one root cell sends its molecular instructions to another in the development process.



Researchers have found hints that the channels by which such molecules move between plant cells may also be mirrored in animal cells. Thus, discoveries about plant development may be more broadly applicable to understanding the fundamental processes of how complex tissues develop from a few cells -- one of the central mysteries in biology.

Duke University biologist Philip Benfey and his colleagues published their latest findings in the Oct. 26, 2004, issue of the journal Current Biology. Besides Benfey, other co-authors are Kimberly Gallagher of Duke, Alice Paquette of New York University and Keiji Nakajima of the Nara Institute of Science and Technology in Japan. Their research was supported by the National Institutes of Health.


In their studies, the researchers sought to understand details of how a protein made by a gene called Short-Root travels from one cell to another in the developing plant root. In previous studies, Benfey and his colleagues made the surprising finding that the Short-Root protein is one means by which one root cell "talks" to another to instruct it to develop in a certain way. Short-Root is so named because genetic mutations that generate a non-functional protein produce plants with stunted roots. The Short-Root protein is a transcription factor, a protein that acts as a master controller of a multitude of genes.

The Arabidopsis plant on which they experimented is a widely used model in plant biology research, and its genetics and biology have been thoroughly studied. The plant’s root is an excellent model for studying tissue development because -- unlike the impossibly intricate convolutions and migrations of developing animal bodies -- each new Arabidopsis root cell arises conveniently from its neighbor and maintains the same position throughout development. "Until now, our hypothesis that there was movement of the Short-Root protein between cells was based on a discordance between where the protein acted and where it was originally made, which was in a different cell," said Benfey. "However, very little was known about how or whether this movement was controlled."

The scientists theorized that the protein moved from cell to cell through channels called plasmodesmata that exist between plant cells. Once it reaches its target cell, the protein migrates to the cell’s nucleus -- the site of the cell’s genetic material -- where it exerts its effects. Similar channels, called "nanotubes," have only recently been discovered in animal cells. The question, said Benfey, was whether the movement of the Short-Root protein was simple random diffusion between the two cells’ cytoplasm -- their liquid interior -- or whether transport occurred via a controlled process.

To follow the transport of the protein, Benfey and his colleagues used a tracer molecule that enabled them to pinpoint the Short-Root protein in living root cells. These studies indicated that in the cells from which the protein moves, it exists in the cytoplasm not associated with any molecular complex. However, the tracer did not reveal that the protein was moving from one cell to another.

The researchers also found that they could disrupt normal movement of the protein by genetically mutating its gene at only a single point. This discovery implied that the protein required a transport machinery to move from one cell to the other. The mutation presumably disrupted the protein’s ability to dock with that machinery. "So, we believe we’ve shown that there is an active process that recognizes signals, and it’s not just a matter of the protein being cytoplasmically localized," said Benfey. "We’ve shown that, while cytoplasmic localization is essential for movement, it’s not sufficient. We’re left with this conclusion that the mutated protein can’t move because there’s a disruption in some interaction that facilitates movement."

While the latest finding represents only the earliest hints of a mechanism by which the protein moves from cell to cell, it offers a promising pathway for further exploring that machinery, said Benfey. "Next, we’re systematically cutting up and changing the Short-Root protein, to identify those regions that are just required for movement," said Benfey. Thus, he said, the researchers hope ultimately to reveal the machinery by which the developing cells talk to one another in the critical process of generating a complex tissue from individual cells.

More broadly, said Benfey, there are parallels between plants and animals in such signaling. "While the process we are studying could be a highly specialized, unique process to plants, there are indications that similar processes could be occurring in developing animal cells. Such similarities could extend the significance of our work beyond plants," he said.

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>