Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clues to the puzzle of ’talking’ root cells

26.10.2004


Biologists studying the development of plant roots, a general basic model for tissue development, are uncovering new pieces of the puzzle of how one root cell sends its molecular instructions to another in the development process.



Researchers have found hints that the channels by which such molecules move between plant cells may also be mirrored in animal cells. Thus, discoveries about plant development may be more broadly applicable to understanding the fundamental processes of how complex tissues develop from a few cells -- one of the central mysteries in biology.

Duke University biologist Philip Benfey and his colleagues published their latest findings in the Oct. 26, 2004, issue of the journal Current Biology. Besides Benfey, other co-authors are Kimberly Gallagher of Duke, Alice Paquette of New York University and Keiji Nakajima of the Nara Institute of Science and Technology in Japan. Their research was supported by the National Institutes of Health.


In their studies, the researchers sought to understand details of how a protein made by a gene called Short-Root travels from one cell to another in the developing plant root. In previous studies, Benfey and his colleagues made the surprising finding that the Short-Root protein is one means by which one root cell "talks" to another to instruct it to develop in a certain way. Short-Root is so named because genetic mutations that generate a non-functional protein produce plants with stunted roots. The Short-Root protein is a transcription factor, a protein that acts as a master controller of a multitude of genes.

The Arabidopsis plant on which they experimented is a widely used model in plant biology research, and its genetics and biology have been thoroughly studied. The plant’s root is an excellent model for studying tissue development because -- unlike the impossibly intricate convolutions and migrations of developing animal bodies -- each new Arabidopsis root cell arises conveniently from its neighbor and maintains the same position throughout development. "Until now, our hypothesis that there was movement of the Short-Root protein between cells was based on a discordance between where the protein acted and where it was originally made, which was in a different cell," said Benfey. "However, very little was known about how or whether this movement was controlled."

The scientists theorized that the protein moved from cell to cell through channels called plasmodesmata that exist between plant cells. Once it reaches its target cell, the protein migrates to the cell’s nucleus -- the site of the cell’s genetic material -- where it exerts its effects. Similar channels, called "nanotubes," have only recently been discovered in animal cells. The question, said Benfey, was whether the movement of the Short-Root protein was simple random diffusion between the two cells’ cytoplasm -- their liquid interior -- or whether transport occurred via a controlled process.

To follow the transport of the protein, Benfey and his colleagues used a tracer molecule that enabled them to pinpoint the Short-Root protein in living root cells. These studies indicated that in the cells from which the protein moves, it exists in the cytoplasm not associated with any molecular complex. However, the tracer did not reveal that the protein was moving from one cell to another.

The researchers also found that they could disrupt normal movement of the protein by genetically mutating its gene at only a single point. This discovery implied that the protein required a transport machinery to move from one cell to the other. The mutation presumably disrupted the protein’s ability to dock with that machinery. "So, we believe we’ve shown that there is an active process that recognizes signals, and it’s not just a matter of the protein being cytoplasmically localized," said Benfey. "We’ve shown that, while cytoplasmic localization is essential for movement, it’s not sufficient. We’re left with this conclusion that the mutated protein can’t move because there’s a disruption in some interaction that facilitates movement."

While the latest finding represents only the earliest hints of a mechanism by which the protein moves from cell to cell, it offers a promising pathway for further exploring that machinery, said Benfey. "Next, we’re systematically cutting up and changing the Short-Root protein, to identify those regions that are just required for movement," said Benfey. Thus, he said, the researchers hope ultimately to reveal the machinery by which the developing cells talk to one another in the critical process of generating a complex tissue from individual cells.

More broadly, said Benfey, there are parallels between plants and animals in such signaling. "While the process we are studying could be a highly specialized, unique process to plants, there are indications that similar processes could be occurring in developing animal cells. Such similarities could extend the significance of our work beyond plants," he said.

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>