Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene for diabetes found

25.10.2004


A gene involved in the action of insulin is associated with type 2 diabetes and the body’s response to insulin, report scientists at Wake Forest University Baptist Medical Center.



Donald W. Bowden, Ph.D., the principal investigator, and his colleagues described the gene in two articles in the November issue of Diabetes, a journal of the American Diabetes Association.

Bowden said the gene is called PTPN1 (Protein Tyrosine Phosphatase N1) and is found on the human chromosome 20, which has long been targeted by investigators as a likely site for diabetes genes. "The protein that this gene makes represses the insulin response, so if you are making a lot of this protein, your ability to respond to insulin would be blunted, which would lead to higher glucose (sugar) in your bloodstream. If it is too high, that’s diabetes," said Bowden, professor of biochemistry and internal medicine - endocrinology. The researchers found several variants of the PTPN1 gene, he said. "One common form is associated with diabetes, and there’s another common form that appears to be protective."


The risky variant of PTPN1 gene is found in about 35 percent of the Caucasian population and the protective form of PTPN1 is found in about 45 percent. The other variants are apparently neutral, neither enhancing nor reducing the risk of diabetes. "There are certainly other genes that contribute to diabetes," Bowden said. "This is good evidence for one." The researchers found a "remarkably similar pattern" in Hispanics. "In Hispanic families, people who had the risky form of the gene did not respond to insulin well and had higher levels of glucose in their blood – both risk factors for diabetes."

Bowden said the newly discovered gene could be a significant contributor to diabetes in Americans. With Josyf C. Mychaleckyj, "we’ve carried out calculations to try to assess how much of an impact the different forms of this gene have on diabetes in the population. The best guess right now is it contributes to about 20 percent of diabetes in Caucasian Americans."

But the picture becomes more complex in other racial groups. "The effect doesn’t seem to be there in African-Americans," Bowden said. Other genes may be responsible for diabetes in African-Americans, and the research team is pursuing those genes.

Bowden said the research was conducted in three population studies. The first group involved 300 Caucasian patients with type 2 diabetes and end-stage kidney disease, matched with 310 unrelated Caucasian subjects who do not have diabetes. The results were confirmed in a second completely independent group of 275 Caucasians with diabetes who are participating in the Diabetes Heart Study and a 200-person control group.

The third group was from the IRAS Family Study (Insulin Resistance Atherosclerosis Family Study), a national study in which Wake Forest investigators based in the Department of Public Health Sciences and the Center for Human Genomics are major contributors. The analysis focused on Hispanic IRAS participants and their families – brothers, sisters, fathers, mothers, and children. In 811 Hispanic participants in the study, the results "are completely consistent" with the results among Caucasians, Bowden said.

He said fifth-year graduate student Jennifer Bento used the latest genetic technologies to work through the entire region of chromosome 20, "genotyped hundreds of markers," and found the different forms of PTPN1.

Besides Bowden, Bento and Mychaleckyj, the team also included Nicholette D. Palmer, Leslie A. Lange, Carl D. Langefeld , Ph.D., and Stephen Rich. Ph.D. of Public Health Sciences and Barry I. Freedman, M.D., a nephrologist.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>