Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene for diabetes found

25.10.2004


A gene involved in the action of insulin is associated with type 2 diabetes and the body’s response to insulin, report scientists at Wake Forest University Baptist Medical Center.



Donald W. Bowden, Ph.D., the principal investigator, and his colleagues described the gene in two articles in the November issue of Diabetes, a journal of the American Diabetes Association.

Bowden said the gene is called PTPN1 (Protein Tyrosine Phosphatase N1) and is found on the human chromosome 20, which has long been targeted by investigators as a likely site for diabetes genes. "The protein that this gene makes represses the insulin response, so if you are making a lot of this protein, your ability to respond to insulin would be blunted, which would lead to higher glucose (sugar) in your bloodstream. If it is too high, that’s diabetes," said Bowden, professor of biochemistry and internal medicine - endocrinology. The researchers found several variants of the PTPN1 gene, he said. "One common form is associated with diabetes, and there’s another common form that appears to be protective."


The risky variant of PTPN1 gene is found in about 35 percent of the Caucasian population and the protective form of PTPN1 is found in about 45 percent. The other variants are apparently neutral, neither enhancing nor reducing the risk of diabetes. "There are certainly other genes that contribute to diabetes," Bowden said. "This is good evidence for one." The researchers found a "remarkably similar pattern" in Hispanics. "In Hispanic families, people who had the risky form of the gene did not respond to insulin well and had higher levels of glucose in their blood – both risk factors for diabetes."

Bowden said the newly discovered gene could be a significant contributor to diabetes in Americans. With Josyf C. Mychaleckyj, "we’ve carried out calculations to try to assess how much of an impact the different forms of this gene have on diabetes in the population. The best guess right now is it contributes to about 20 percent of diabetes in Caucasian Americans."

But the picture becomes more complex in other racial groups. "The effect doesn’t seem to be there in African-Americans," Bowden said. Other genes may be responsible for diabetes in African-Americans, and the research team is pursuing those genes.

Bowden said the research was conducted in three population studies. The first group involved 300 Caucasian patients with type 2 diabetes and end-stage kidney disease, matched with 310 unrelated Caucasian subjects who do not have diabetes. The results were confirmed in a second completely independent group of 275 Caucasians with diabetes who are participating in the Diabetes Heart Study and a 200-person control group.

The third group was from the IRAS Family Study (Insulin Resistance Atherosclerosis Family Study), a national study in which Wake Forest investigators based in the Department of Public Health Sciences and the Center for Human Genomics are major contributors. The analysis focused on Hispanic IRAS participants and their families – brothers, sisters, fathers, mothers, and children. In 811 Hispanic participants in the study, the results "are completely consistent" with the results among Caucasians, Bowden said.

He said fifth-year graduate student Jennifer Bento used the latest genetic technologies to work through the entire region of chromosome 20, "genotyped hundreds of markers," and found the different forms of PTPN1.

Besides Bowden, Bento and Mychaleckyj, the team also included Nicholette D. Palmer, Leslie A. Lange, Carl D. Langefeld , Ph.D., and Stephen Rich. Ph.D. of Public Health Sciences and Barry I. Freedman, M.D., a nephrologist.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>