Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Grab for Iron - Breakthrough for Innsbruck Scientists

25.10.2004


Nearly all organisms need iron to survive, even mould. For people with a weakened immune system such fungi pose a deadly threat. Scientists from Innsbruck (Austria) have now been able to genetically block the iron metabolism of Aspergillus fumigatus mould and thus render it harmless to humans. This discovery opens up completely new paths for developing drugs against fungal infections.

The Aspergillus fumigatus mould is commonly found in compost, green bins, potting compost and on wallpaper. For people with a weakened immune system it can become dangerous, attacking organs like lung, stomach, intestine and the nervous system. Because it is difficult to diagnose and treat, such a mould infection (aspergillosis) becomes life-threatening for patients whose immune system has been affected by chemotherapy, HIV infection or an organ transplant. Bacteria can be overcome quite effectively with antibiotics, but there are as yet hardly any effective drugs against mould, which accounts for the fact that 80 percent of affected patients do not survive such an infection.

Fighting mould



Now, for the first time, a working group headed by Hubertus Haas and Markus Schrettl of the Department for Molecular Biology of Innsbruck Medical University has managed to genetically block the iron metabolism of the mould. In a recent article in the acclaimed scientific Journal of Experimental Medicine they proved that the siderophore system is essential for the virulence of Aspergillus fumigatus. The mould uses the so-called siderophores for the reception of vital iron.

These low-molecular-weight peptides can bind iron and are sent out by the cells to absorb iron as well as being used inside the cell to store it. If this siderophore system is systematically disrupted, the fungus loses its essential iron supply and dies. In animal modelling this has been proven successfully. Being able to understand this mechanism offers very promising perspectives for the development of new therapies against fungal infections. Of particular advantage is the fact that humans do not have a comparable system, which bodes well for potential inhibitors having few side-effects.

“Gaining detailed insights into the siderophore metabolism enables us to investigate the system as a potential handle for combating aspergillosis and other fungal infections,” Hubertus Haas explained the impact of this breakthrough. “So far we have been able to identify at least 30 genes with gene products involved in this system. At the moment we are carrying out microarray-profiling, which should uncover additional factors,” Haas continued.

Basic research and application potential

The working group from Innsbruck has been exploring the iron metabolism of mould since 1998, supported by research funds from the Austrian Science Foundation (FWF) and the Austrian National Bank (ÖNB). As the new approaches for antifungal therapies show, there is a wealth of application potential in such basic molecular-biology research into identifying and characterizing the siderophore system. A novel screening process for antifungal substances – for which a patent is pending – recently won the Life Science Business Award of the Center for Academic Spin-offs Tyrol (CAST).

Univ.-Prof. Mag. Dr. Hubertus Ha | alfa
Further information:
http://www.i-med.ac.at
http://www.jem.org

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>