Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential new oncogene may be missing link in cancer-causing chain

25.10.2004


High levels of a protein called LRP6 can make cancer cells more aggressive, according to Washington University researchers affiliated with the Siteman Cancer Center. The protein’s ability to enhance tumor development suggests that the gene that codes for LRP6 is an oncogene--a gene that contributes to tumor development when overactivated.



"Because no one has ever connected LRP6 to proliferation in tumors, we believe we may have identified a new oncogene," says Guojun Bu, Ph.D., associate professor of pediatrics and of cell biology and physiology. The findings will be reported in the December 2nd issue of the journal Oncogene. The article is available online Oct. 25. "In several types of human cancer, such as breast and colon cancer, a key cell signaling pathway that regulates cell growth and development is overactive because a gene coding for a pathway component has mutated," Bu says.

Increased signal activity from this pathway can lead to abnormal cell proliferation and ultimately to cancer, but researchers have been unable to identify the pathway component responsible for certain types of cancer such as breast cancer. "We believe LRP6 may be the missing link, the long-sought component that turns up the activity of this signaling pathway," Bu says.


To uncover LRP6’s role in cancer, Bu’s team took slow-growing cancer cells and altered the LRP6 gene so that it made more of the protein. They found that the cancer cells began proliferating more rapidly as a result. When the researchers introduced these aggressive cells into mice, the animals developed tumors twice as large as those caused by the original, slow-growing cancer cells.

Having seen the effect of high-levels of LRP6 in laboratory experiments, Bu and his team looked for higher-than-normal LRP6 gene activity in human tumor samples. "We used patient-matched tumor specimens from the Siteman Cancer Center," Bu says. "We found both colon and breast cancer samples with increased LRP6 gene activity." "The most interesting was breast cancer," he says. "We found the LRP6 gene had higher than normal activity in five of the eight breast tumors we tested. So, it appears that an increase of LRP6 alone may lead to breast cancer in these cases."

Next Bu and his colleagues plan to screen a larger group of breast cancer samples to see how frequently the LRP6 gene is overactivated in tumor tissue. Because LRP6 is an essential component of a key signaling pathway and located in an exposed position on the surface of cells, Bu believes the protein may be a good target for drugs that decrease its function to slow down or prevent the progression of some types of cancer.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>