Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New protein associated with aggressiveness in breast and ovarian cancer

25.10.2004


A research team led by The University of Texas M. D. Anderson Cancer Center has found a potential new protein marker for prognosis of breast and ovarian cancer.



In the November, 2004 issue of the journal Nature Medicine, the researchers report tumor cells that "overexpress" the protein Rab25 are more aggressive and associated with poorer outcome. Thus, Rab25 could represent a novel therapeutic target or marker of tumor behavior, they say.

The researchers matched tumor samples to outcomes in about 100 patients diagnosed with either breast or ovarian cancer and found that a low level of Rab25 protein on a patient’s cancer sample was associated with a better clinical outcome in both cancer types. For example, patients with early stage (I and II) ovarian cancer who had low Rab25 tumor expression had an 80 percent survival five years after treatment, compared to 50 percent survival if Rab25 expression was high. In women with advanced breast cancer, a low level of Rab25 protein expression was associated with a 60 percent five-year survival, compared to 40 percent if Rab25 protein expression was high.


Adding this protein to other known molecular markers of progression could contribute to a "highly predictive test of outcome in breast or ovarian cancer," says the study’s lead investigator, Gordon Mills, M.D., Ph.D., a professor and chair of the Department of Molecular Therapeutics at M. D. Anderson. He adds that the protein might also, one day, be a target for cancer treatment. "We are pursuing Rab25 both as a test for outcomes and as a possible treatment."

Researchers from Lawrence Berkeley National Laboratory, the University of British Columbia, the University of California San Francisco, and Northwestern University participated in the research study, which was funded by the National Cancer Institute and the U. S. Department of Defense. The study is the first to link Rab25 to cancer, although several other members of the large Rab family of proteins, and the even bigger Ras protein superfamily to which it belongs, have been linked to the disease, says Mills. Members of the Ras protein family are mutated in a significant percentage of cancers, he says, and experimental drugs based on blocking Ras function are now being tested.

Rab proteins are anchored to intracellular membranes, and are activated when a receptor on the outside of the membrane is stimulated and the signal is brought into the cell. The "best current evidence" is that Rab25 is involved in deciding whether those internalized cell surface receptors "will either be degraded or will be returned to the cell surface," he says. Based on that knowledge, Mills and the team of researchers theorize that the receptors that Rab25 is deciding the fate of are those related to cell growth. "If you had more growth receptor going back to the surface instead of being degraded, you would have increased signaling, and more cell proliferation," says Mills. "But that working hypothesis has not yet been proven."

The other vital role of Rab25 is to activate the critical "PI3 kinase/AKT/PTEN" protein pathway involved in cell survival and growth. This pathway, however, is known to contain multiple tumor suppressor genes and oncogenes "and is targeted by genetic mutations in cancer more frequently than any other signaling pathway," says Mills. The fact that Rab25 is involved in this pathway "appears to be very important," and may provide a way to target the effects of Rab25, he adds.

The researchers discovered that the gene that produces the Rab25 protein is copied many more times than is normal in some breast and ovarian tumor cells, which then increases expression, or production, of the Rab25 protein. They then conducted laboratory in vitro cell line studies, and in vivo studies using human breast and ovarian tumor xerographs in mice, and were able to demonstrate that either increasing or decreasing expression of Rab25 altered tumor growth. Finally, using the human tumor samples, the researchers correlated Rab25 expression with survival. "We know now that change in expression is associated with a poorer patient outcome in both breast and ovarian cancer, and that may help us predict outcomes in patients in the future" says Mills. "But we have a long way to go to understanding exactly what it is that Rab25 is doing, and how we might be able to use it in treatment."

Co-authors include, from M. D. Anderson: Kwai Wa Cheng, Ph.D., John P. Lahad, Jinsong Liu, M.D., and Karen Lu, M.D.; from Lawrence Berkeley National Laboratory, Berkeley, CA: Wen-lin Kuo, Ph.D., Anna Lapuk, Ph.D., Kyosuke Yamada, Ph.D., and Joel Gray, Ph.D.; Nelly Auersperg, Ph.D., and David Fishman, M.D., from the University of British Columbia and Northwestern University respectively; Karen Smith-McCune, M.D., from the University of California San Francisco.

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>