Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exercising limbs protects brain cells affected by Parkinson’s

25.10.2004


In an animal model of Parkinson’s, exercise prevents degeneration of nerve cells that are normally impaired or destroyed by the disease, according to University of Pittsburgh researchers. Based on their work, which was presented today at the Annual Meeting of the Society for Neuroscience in San Diego, a small pilot study has been initiated in patients with Parkinson’s to determine if regular exercise has an impact on the progression of their disease.



In Parkinson’s, cells in the brain that contain dopamine, a neurotransmitter essential for purposeful and facile muscle control, progressively die until only a small percentage remains. Dopamine carries signals from the nerve cells, or neurons, located deep inside the brain in an area called the substantia nigra along nerve fibers that end in the brain’s striatum, an area involved in control of movement. In the absence of dopamine, neurons can’t send the appropriate messages for smooth motor control, resulting in the telltale symptoms of Parkinson’s: uncontrollable tremors, rigidity of limbs, slow movements and stooped posture.

In one of the studies presented by Annie D. Cohen, a doctoral student in the department of neurology and Center for Neuroscience at the University of Pittsburgh School of Medicine, the researchers examined the brains of rats that had been forced to exercise for seven days before receiving a toxin that normally induces Parkinson’s disease. They found that, compared to animals that had not been exercised, significantly fewer dopamine-containing neurons died.


"Whereas a number of explanations could be offered as to why the exercised animals do so well, we have evidence that indicates it’s because exercise stimulates production of key proteins that are important for survival of neurons," said the study’s senior author, Michael J. Zigmond, Ph.D., professor of neurology, neurobiology and psychiatry, and co-director of the Parkinson’s Disease Center of Excellence at the University of Pittsburgh School of Medicine.

Called neurotrophic factors, these proteins protect neurons and promote their survival. According to the researchers’ studies, one particular neurotrophic factor, glial cell line-derived neurotropic factor, or GDNF, is increased with exercise by 40 percent. "GDNF, and probably other factors as well, may help offset the cell’s vulnerability to the effects of oxidative stress from free radical molecules that are produced by the toxin we use in our rat model," Dr. Zigmond explained.

Parkinson’s is induced by giving animals a substance called 6-hydroxydopamine (6-OHDA). The toxin results in brain pathology that mimics what is seen in human disease - a decrease of dopamine-containing neurons in the substantia nigra and of axon terminals in the striatum, the site where dopamine is usually released.

When delivered to one side of the brain, 6-OHDA causes movement deficits in the limbs on the opposite side. If a cast is placed on the animal’s left forelimb, for example, and 6-OHDA is administered to the left side of the brain, the toxin would normally cause the right forelimb to be impaired. But this is not the case. Earlier studies by Timothy Schallert, Ph.D., at the University of Texas in Austin, found that by immobilizing the left arm – the good arm – the rat has no choice but to use its right arm and does so without much difficulty.

To determine if forcing exercise of a particular limb could be protective against Parkinson’s, Dr. Zigmond’s group performed a study whereby one forelimb was immobilized in a cast for seven days, placing more physical demands on the free forelimb. After the cast was removed, 6-OHDA was administered to the brain on the same side as the limb that had been casted. The researchers observed no deficits in movement with either limb. Most importantly, the limb that had been exercised and should have been affected by the toxin was fine.

In addition, reported Ms. Cohen, an analysis of brain tissue 28 days after 6-OHDA injection found that in the animals that were forced to exercise their limb, only 6 percent of dopamine-containing neurons were lost. But in animals given the toxin without prior exercise, these neurons were reduced by 87 percent. "We looked for certain cell markers to assess to what extent exercise was protective against degeneration, and even at two days after 6-OHDA administration we saw there to be a protective effect. Our data suggest the possibility that exercise can make dopamine neurons resistant to neurotoxins and may therefore be a useful therapy for Parkinson’s disease," noted Ms. Cohen.

"Whether exercise can reduce the risk of Parkinson’s disease or can slow down its progression are intriguing questions. We are certainly encouraged that in our experimental models we can demonstrate that this sort of forced exercise improves motor function and protects the neurons affected by the disease," added Dr. Zigmond. "In a collaboration with Dr. Shallert’s lab at the University of Texas, we are now looking at more clinically relevant forms of exercise, such as running. We also plan to look at the effects of housing our rats in an enriched environment."

As an extension to their animal research, Dr. Zigmond has enlisted Anthony DeLitto, Ph.D., P.T., FAPTA, and colleagues from the University of Pittsburgh School of Health and Rehabilitation Sciences to begin a study whereby patients with Parkinson’s disease are enrolled in a 60-minute exercise program that meets three times a week. The study plans to enroll 20 patients in its initial phase.

In addition to Zigmond, other authors of the abstract presented by Ms. Cohen are Amina El Ayadi, Ph.D., and Amanda Smith, Ph.D., also from the department of neurology at the University of Pittsburgh School of Medicine. Related studies also were presented by Niklas Lindgren, Ph.D., and Eva Lin, Ph.D., both from the department of neurology; and Jane E. Cavanaugh, Ph.D., of the department of pharmacology. Their research was supported by grants from the National Institute of Neurological Disorders and Stroke, the United States Army, and the Michael J. Fox Foundation.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>