Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exercising limbs protects brain cells affected by Parkinson’s

25.10.2004


In an animal model of Parkinson’s, exercise prevents degeneration of nerve cells that are normally impaired or destroyed by the disease, according to University of Pittsburgh researchers. Based on their work, which was presented today at the Annual Meeting of the Society for Neuroscience in San Diego, a small pilot study has been initiated in patients with Parkinson’s to determine if regular exercise has an impact on the progression of their disease.



In Parkinson’s, cells in the brain that contain dopamine, a neurotransmitter essential for purposeful and facile muscle control, progressively die until only a small percentage remains. Dopamine carries signals from the nerve cells, or neurons, located deep inside the brain in an area called the substantia nigra along nerve fibers that end in the brain’s striatum, an area involved in control of movement. In the absence of dopamine, neurons can’t send the appropriate messages for smooth motor control, resulting in the telltale symptoms of Parkinson’s: uncontrollable tremors, rigidity of limbs, slow movements and stooped posture.

In one of the studies presented by Annie D. Cohen, a doctoral student in the department of neurology and Center for Neuroscience at the University of Pittsburgh School of Medicine, the researchers examined the brains of rats that had been forced to exercise for seven days before receiving a toxin that normally induces Parkinson’s disease. They found that, compared to animals that had not been exercised, significantly fewer dopamine-containing neurons died.


"Whereas a number of explanations could be offered as to why the exercised animals do so well, we have evidence that indicates it’s because exercise stimulates production of key proteins that are important for survival of neurons," said the study’s senior author, Michael J. Zigmond, Ph.D., professor of neurology, neurobiology and psychiatry, and co-director of the Parkinson’s Disease Center of Excellence at the University of Pittsburgh School of Medicine.

Called neurotrophic factors, these proteins protect neurons and promote their survival. According to the researchers’ studies, one particular neurotrophic factor, glial cell line-derived neurotropic factor, or GDNF, is increased with exercise by 40 percent. "GDNF, and probably other factors as well, may help offset the cell’s vulnerability to the effects of oxidative stress from free radical molecules that are produced by the toxin we use in our rat model," Dr. Zigmond explained.

Parkinson’s is induced by giving animals a substance called 6-hydroxydopamine (6-OHDA). The toxin results in brain pathology that mimics what is seen in human disease - a decrease of dopamine-containing neurons in the substantia nigra and of axon terminals in the striatum, the site where dopamine is usually released.

When delivered to one side of the brain, 6-OHDA causes movement deficits in the limbs on the opposite side. If a cast is placed on the animal’s left forelimb, for example, and 6-OHDA is administered to the left side of the brain, the toxin would normally cause the right forelimb to be impaired. But this is not the case. Earlier studies by Timothy Schallert, Ph.D., at the University of Texas in Austin, found that by immobilizing the left arm – the good arm – the rat has no choice but to use its right arm and does so without much difficulty.

To determine if forcing exercise of a particular limb could be protective against Parkinson’s, Dr. Zigmond’s group performed a study whereby one forelimb was immobilized in a cast for seven days, placing more physical demands on the free forelimb. After the cast was removed, 6-OHDA was administered to the brain on the same side as the limb that had been casted. The researchers observed no deficits in movement with either limb. Most importantly, the limb that had been exercised and should have been affected by the toxin was fine.

In addition, reported Ms. Cohen, an analysis of brain tissue 28 days after 6-OHDA injection found that in the animals that were forced to exercise their limb, only 6 percent of dopamine-containing neurons were lost. But in animals given the toxin without prior exercise, these neurons were reduced by 87 percent. "We looked for certain cell markers to assess to what extent exercise was protective against degeneration, and even at two days after 6-OHDA administration we saw there to be a protective effect. Our data suggest the possibility that exercise can make dopamine neurons resistant to neurotoxins and may therefore be a useful therapy for Parkinson’s disease," noted Ms. Cohen.

"Whether exercise can reduce the risk of Parkinson’s disease or can slow down its progression are intriguing questions. We are certainly encouraged that in our experimental models we can demonstrate that this sort of forced exercise improves motor function and protects the neurons affected by the disease," added Dr. Zigmond. "In a collaboration with Dr. Shallert’s lab at the University of Texas, we are now looking at more clinically relevant forms of exercise, such as running. We also plan to look at the effects of housing our rats in an enriched environment."

As an extension to their animal research, Dr. Zigmond has enlisted Anthony DeLitto, Ph.D., P.T., FAPTA, and colleagues from the University of Pittsburgh School of Health and Rehabilitation Sciences to begin a study whereby patients with Parkinson’s disease are enrolled in a 60-minute exercise program that meets three times a week. The study plans to enroll 20 patients in its initial phase.

In addition to Zigmond, other authors of the abstract presented by Ms. Cohen are Amina El Ayadi, Ph.D., and Amanda Smith, Ph.D., also from the department of neurology at the University of Pittsburgh School of Medicine. Related studies also were presented by Niklas Lindgren, Ph.D., and Eva Lin, Ph.D., both from the department of neurology; and Jane E. Cavanaugh, Ph.D., of the department of pharmacology. Their research was supported by grants from the National Institute of Neurological Disorders and Stroke, the United States Army, and the Michael J. Fox Foundation.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>