Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene for common form of Parkinson’s pinpointed

25.10.2004


Researchers have identified a new gene that causes a common form of inherited Parkinson’s disease (PD) and whose understanding they believe "will impact not only patients and their families but will open novel avenues of research aimed at identifying and ultimately halting the molecular events that lead to PD."



The international research team reported finding the gene in a mutant form in five families from Spain and the United Kingdom. They have named the protein "dardarin" after the Basque word for tremor. The researchers, led by Jordi Pérez-Tur, Nick Wood, and Andrew Singleton, were seeking to pinpoint the gene that caused a form of PD called PARK8, which was first reported in 2002. Their search was spurred by the knowledge that earlier discoveries of other genetic mutations underlying rare forms of PD had yielded insight into PD and aided design and testing of drug treatments.

Until their studies, it was only known that PARK8 was caused by a mutation in a gene somewhere along a chromosomal region, or locus, that contained about 116 genes. The researchers had identified four families from the Basque region of Spain and one from the United Kingdom that showed evidence of having PARK8 PD. Their systematic analyses of the PARK8 locus led them to track down mutations that all had in the gene encoding dardarin.


Evidence implicating dardarin includes the fact that it is expressed throughout the brain and that the characteristic mutations in dardarin are not present in more than 1400 corresponding chromosomes from people without PD. One of the characteristic mutations was also identified in 8% of 137 apparently unrelated Basque people with PD. According to the researchers, that figure suggests that this mutation that underlies PARK8 PD is a relatively common cause of the disease in the Basque population.

Also, within the families they studied, people with PD were found to carry the mutation in dardarin, while those who were unaffected did not. Although the function of dardarin is not known, they said, it has the characteristics of a molecular switch called a kinase. Such enzymatic switches activate other protein enzymes by attaching a phosphate to them -- called phosphorylation. "Because phosphorylation of proteins has been implicated in the pathogenesis of neurodegenerative disease, it is particularly tempting to hypothesize a role for dardarin in the phosphorylation of proteins central to PD..." wrote the researchers.

Coro Paisán-Ruíz, Shushant Jain, E. Whitney Evans, William P. Gilks, Javier Simón, Marcel van der Brug, Adolfo López de Munain, Silvia Aparicio, Angel Martínez Gil, Naheed Khan, Janel Johnson, Javier Ruiz Martinez, David Nicholl, Itxaso Marti Carrera, Amets Saénz Pena, Rohan de Silva, Andrew Lees, José Félix Martí-Massó, Jordi Pérez-Tur, Nick W. Wood, and Andrew B. Singleton: "Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson’s Disease"

The other members of the research team include Coro Paisán-Ru?z, Javier Simón, Sivia Aparicio, and Jordi Pérez-Tur from the Institut de Biomedicina de València-CSIC; Nick W Wood and Shushant Jain from the Institute of Neurology in London; Shushant Jain, William P Gilks, Naheed Khan, Rohan de Silva, and Andrew Lees from the Reta Lila Weston Institute of Neurological Studies; E Whitney Evans, Marcel van der Brug, Janel Johnson, and Andrew B Singleton from the National Institute on Aging; Adolfo López de Munain, Itxaso Marti Carrera, Amets Saenz Pena, and José Félix Martí-Massó from the Hospital Donostia; Angel Martínez Gil from the Hospital Ntra. Sra. de la Antigua; Javier Ruiz Martinez from the Hospital de Mendaro; and David Nicholl from the Queen Elizabeth Hospital.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>