Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered protein suggests novel tumorigenic pathway

22.10.2004


Scientists in Tokyo have discovered a new protein, named PICT-1, that is involved in regulating PTEN, the second most commonly mutated tumor suppressor in human tumors. This discovery suggests the possibility of a new tumorigenic pathway that is due to defects in a protein involved in stabilizing PTEN rather than defects in PTEN itself.


The research appears as the "Paper of the Week" in the October 29 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.


Mutations in the PTEN tumor suppressor are found in a variety of human cancers including breast and prostate cancers. Approximately 20 percent of the mutations are located in a segment of 70 amino acids at the C-terminus of PTEN. These mutations lead to the rapid degradation of PTEN in cells, indicating that this region is critical for ensuring PTEN stability.

Studies have shown that cells add phosphate molecules to specific serine and threonine residues within the C-terminal segment to stabilize PTEN. Curious about the proteins involved in this stabilization, Dr. Tomohiko Maehama and his colleagues at the Tokyo Metropolitan Institute of Medical Science and the Tokyo Metropolitan University screened a library of human brain cDNA to find proteins that interact with PTEN. They identified a new protein that binds to the C-terminus of PTEN and named it PICT-1 (protein interacting with the carboxyl terminus 1).



Maehama and his colleagues discovered that PTEN molecules with mutations in their C-terminus are unable to bind to PICT-1, and that PICT-1 stabilizes PTEN by regulating the phosphorylation of a serine in the C-terminal segment. "From scientific point of view, it should be noted that PICT-1 is the first protein that interacts with the PTEN protein and regulates its phosphorylation," said Maehama.

The researchers hypothesize that PICT-1 may affect phosphorylation by activating a kinase or inhibiting a phosphatase. The identification of PTEN regulators has been a tremendously difficult problem and this research represents a huge breakthrough.

Maehama explained that this discovery indicates that cells with impaired PICT-1 function may become cancerous because of the resulting instability in PTEN. This would represent a new tumorigenic pathway that is not due to a defective PTEN gene but rather a loss of PTEN function caused by PICT-1. If this is the case, then this new type of tumor may be treated with rapamycin or related drugs that are often used in cancers resulting from PTEN loss of function.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Spinning rugby balls: The rotation of the most massive galaxies

23.05.2018 | Physics and Astronomy

Raiding the rape field

23.05.2018 | Agricultural and Forestry Science

Turning entanglement upside down

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>