Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered protein suggests novel tumorigenic pathway

22.10.2004


Scientists in Tokyo have discovered a new protein, named PICT-1, that is involved in regulating PTEN, the second most commonly mutated tumor suppressor in human tumors. This discovery suggests the possibility of a new tumorigenic pathway that is due to defects in a protein involved in stabilizing PTEN rather than defects in PTEN itself.


The research appears as the "Paper of the Week" in the October 29 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.


Mutations in the PTEN tumor suppressor are found in a variety of human cancers including breast and prostate cancers. Approximately 20 percent of the mutations are located in a segment of 70 amino acids at the C-terminus of PTEN. These mutations lead to the rapid degradation of PTEN in cells, indicating that this region is critical for ensuring PTEN stability.

Studies have shown that cells add phosphate molecules to specific serine and threonine residues within the C-terminal segment to stabilize PTEN. Curious about the proteins involved in this stabilization, Dr. Tomohiko Maehama and his colleagues at the Tokyo Metropolitan Institute of Medical Science and the Tokyo Metropolitan University screened a library of human brain cDNA to find proteins that interact with PTEN. They identified a new protein that binds to the C-terminus of PTEN and named it PICT-1 (protein interacting with the carboxyl terminus 1).



Maehama and his colleagues discovered that PTEN molecules with mutations in their C-terminus are unable to bind to PICT-1, and that PICT-1 stabilizes PTEN by regulating the phosphorylation of a serine in the C-terminal segment. "From scientific point of view, it should be noted that PICT-1 is the first protein that interacts with the PTEN protein and regulates its phosphorylation," said Maehama.

The researchers hypothesize that PICT-1 may affect phosphorylation by activating a kinase or inhibiting a phosphatase. The identification of PTEN regulators has been a tremendously difficult problem and this research represents a huge breakthrough.

Maehama explained that this discovery indicates that cells with impaired PICT-1 function may become cancerous because of the resulting instability in PTEN. This would represent a new tumorigenic pathway that is not due to a defective PTEN gene but rather a loss of PTEN function caused by PICT-1. If this is the case, then this new type of tumor may be treated with rapamycin or related drugs that are often used in cancers resulting from PTEN loss of function.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>