Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered protein suggests novel tumorigenic pathway

22.10.2004


Scientists in Tokyo have discovered a new protein, named PICT-1, that is involved in regulating PTEN, the second most commonly mutated tumor suppressor in human tumors. This discovery suggests the possibility of a new tumorigenic pathway that is due to defects in a protein involved in stabilizing PTEN rather than defects in PTEN itself.


The research appears as the "Paper of the Week" in the October 29 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.


Mutations in the PTEN tumor suppressor are found in a variety of human cancers including breast and prostate cancers. Approximately 20 percent of the mutations are located in a segment of 70 amino acids at the C-terminus of PTEN. These mutations lead to the rapid degradation of PTEN in cells, indicating that this region is critical for ensuring PTEN stability.

Studies have shown that cells add phosphate molecules to specific serine and threonine residues within the C-terminal segment to stabilize PTEN. Curious about the proteins involved in this stabilization, Dr. Tomohiko Maehama and his colleagues at the Tokyo Metropolitan Institute of Medical Science and the Tokyo Metropolitan University screened a library of human brain cDNA to find proteins that interact with PTEN. They identified a new protein that binds to the C-terminus of PTEN and named it PICT-1 (protein interacting with the carboxyl terminus 1).



Maehama and his colleagues discovered that PTEN molecules with mutations in their C-terminus are unable to bind to PICT-1, and that PICT-1 stabilizes PTEN by regulating the phosphorylation of a serine in the C-terminal segment. "From scientific point of view, it should be noted that PICT-1 is the first protein that interacts with the PTEN protein and regulates its phosphorylation," said Maehama.

The researchers hypothesize that PICT-1 may affect phosphorylation by activating a kinase or inhibiting a phosphatase. The identification of PTEN regulators has been a tremendously difficult problem and this research represents a huge breakthrough.

Maehama explained that this discovery indicates that cells with impaired PICT-1 function may become cancerous because of the resulting instability in PTEN. This would represent a new tumorigenic pathway that is not due to a defective PTEN gene but rather a loss of PTEN function caused by PICT-1. If this is the case, then this new type of tumor may be treated with rapamycin or related drugs that are often used in cancers resulting from PTEN loss of function.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>