Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Brain’ in a dish acts as autopilot, living computer

22.10.2004


A University of Florida scientist has grown a living "brain" that can fly a simulated plane, giving scientists a novel way to observe how brain cells function as a network.



The "brain" -- a collection of 25,000 living neurons, or nerve cells, taken from a rat’s brain and cultured inside a glass dish -- gives scientists a unique real-time window into the brain at the cellular level. By watching the brain cells interact, scientists hope to understand what causes neural disorders such as epilepsy and to determine noninvasive ways to intervene. As living computers, they may someday be used to fly small unmanned airplanes or handle tasks that are dangerous for humans, such as search-and-rescue missions or bomb damage assessments.

"We’re interested in studying how brains compute," said Thomas DeMarse, the UF professor of biomedical engineering who designed the study. "If you think about your brain, and learning and the memory process, I can ask you questions about when you were 5 years old and you can retrieve information. That’s a tremendous capacity for memory. In fact, you perform fairly simple tasks that you would think a computer would easily be able to accomplish, but in fact it can’t."


While computers are very fast at processing some kinds of information, they can’t approach the flexibility of the human brain, DeMarse said. In particular, brains can easily make certain kinds of computations – such as recognizing an unfamiliar piece of furniture as a table or a lamp – that are very difficult to program into today’s computers. "If we can extract the rules of how these neural networks are doing computations like pattern recognition, we can apply that to create novel computing systems," he said.

DeMarse experimental "brain" interacts with an F-22 fighter jet flight simulator through a specially designed plate called a multi-electrode array and a common desktop computer. "It’s essentially a dish with 60 electrodes arranged in a grid at the bottom," DeMarse said. "Over that we put the living cortical neurons from rats, which rapidly begin to reconnect themselves, forming a living neural network – a brain."

The brain and the simulator establish a two-way connection, similar to how neurons receive and interpret signals from each other to control our bodies. By observing how the nerve cells interact with the simulator, scientists can decode how a neural network establishes connections and begins to compute, DeMarse said.

When DeMarse first puts the neurons in the dish, they look like little more than grains of sand sprinkled in water. However, individual neurons soon begin to extend microscopic lines toward each other, making connections that represent neural processes. "You see one extend a process, pull it back, extend it out – and it may do that a couple of times, just sampling who’s next to it, until over time the connectivity starts to establish itself," he said. "(The brain is) getting its network to the point where it’s a live computation device."

To control the simulated aircraft, the neurons first receive information from the computer about flight conditions: whether the plane is flying straight and level or is tilted to the left or to the right. The neurons then analyze the data and respond by sending signals to the plane’s controls. Those signals alter the flight path and new information is sent to the neurons, creating a feedback system. "Initially when we hook up this brain to a flight simulator, it doesn’t know how to control the aircraft," DeMarse said. "So you hook it up and the aircraft simply drifts randomly. And as the data comes in, it slowly modifies the (neural) network so over time, the network gradually learns to fly the aircraft."

Although the brain currently is able to control the pitch and roll of the simulated aircraft in weather conditions ranging from blue skies to stormy, hurricane-force winds, the underlying goal is a more fundamental understanding of how neurons interact as a network, DeMarse said. "There’s a lot of data out there that will tell you that the computation that’s going on here isn’t based on just one neuron. The computational property is actually an emergent property of hundreds or thousands of neurons cooperating to produce the amazing processing power of the brain."

With Jose Principe, a UF distinguished professor of electrical engineering and director of UF’s Computational NeuroEngineering Laboratory, DeMarse has a $500,000 National Science Foundation grant to create a mathematical model that reproduces how the neurons compute.

These living neural networks are being used to pursue a variety of engineering and neurobiology research goals, said Steven Potter, an assistant professor in the Georgia Tech/Emory Department of Biomedical Engineering who uses cultured brain cells to study learning and memory. DeMarse was a postdoctoral researcher in Potter’s laboratory at Georgia Tech before he arrived at UF. "A lot of people have been interested in what changes in the brains of animals and people when they are learning things," Potter said. "We’re interested in getting down into the network and cellular mechanisms, which is hard to do in living animals. And the engineering goal would be to get ideas from this system about how brains compute and process information."

Though the "brain" can successfully control a flight simulation program, more elaborate applications are a long way off, DeMarse said. "We’re just starting out. But using this model will help us understand the crucial bit of information between inputs and the stuff that comes out," he said. "And you can imagine the more you learn about that, the more you can harness the computation of these neurons into a wide range of applications."

Thomas DeMarse | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>